
Testing Attribute-Based Transactions in SOC

Laura Bocchi and Emilio Tuosto

Department of Computer Science, University of Leicester, UK

Abstract. We set the basis for a theory of testing for distributed transactions in
service oriented systems where each service definition is decorated with a trans-
actional attribute (inspired by the Java Transaction API). Transaction attributes
discipline how services are executed with respect to the transactional scope of the
invoking party.
We define a language of observers and show that, in general, the choice of dif-
ferent transactional attributes causes different system’s behaviours wrt the testing
equivalences induced by the observers.

1 Introduction

We give an observational theory for transactional behaviours in Service-Oriented Com-
puting (SOC) based on the theory of testing [4]. Transaction in SOC, often referred to as
long-running, feature a mechanism called compensation which is a weaker version1 of
the classic rollback mechanism of ACID transactions in database systems. In SOC, each
activity of a transactional computation can be associated with a compensation installed
as the activity is executed. The run-time failure of an activity is backwardly propagated
and triggers the execution of the compensations installed for the activities completed
earlier. Therefore, compensations have been studied in relation to mechanisms of fail-
ure propagation.

Notably, the key characteristics of SOC are loose-coupling and dynamism: services
can be discovered at run-time relying only on their published interface, and upon service
invocation the system dynamically reconfigures to include the newly created service
instance. System reconfigurations should also consider transactional scopes (or scopes
for short) as they play a fundamental role in failures propagation.

Consider the system 〈〈invoke(s).P〉〉 where the transaction, represented by the an-
gled brackets, includes a process that invokes a service, which is described by the in-
terface s, and then behaves like P. Suppose that there exists a provider that implements
s as process Q. Should the system evolve so to include Q in the scope of the invoking
process (i.e., 〈〈P | Q〉〉)? Should Q be running in a fresh scope (i.e., 〈〈P〉〉 | 〈〈Q〉〉)? Or else,
should Q be outside any scope (i.e., 〈〈P〉〉 | Q)? Each alternative is valid and influences
failure propagation and the behaviour of the system (as shown in § 4).

We design an observational theory that yields a formal framework for analysing the
interplay between communication failures and the behaviour of a service-oriented sys-
tem. We use may- and must-testing equivalences to compare transactional behaviours.

1 ACID transactions are implemented by locking resources. Locks can be unfeasible if transac-
tions are long lasting.

invoker outside a scope invoker inside a scope callee supports

(1) • =⇒ • ◦ • =⇒ • ◦ r (Requires)

(2) • =⇒ • ◦ • =⇒ • ◦ rn (Requires New)

(3) • =⇒ • ◦ • =⇒ • ◦ ns (Not Supported)

(4) • =⇒ ⊗ • =⇒ • ◦ m (Mandatory)

(5) • =⇒ • ◦ • =⇒ ⊗ n (Never)

(6) • =⇒ • ◦ • =⇒ • ◦ s (Supported)

Table 1. Informal semantics of EJB attributes. Boxes represent scopes, • represent callers, ◦ rep-
resent callees. Failed activities are denoted by ⊗. Each row shows the behaviour of one attribute;
the first two columns show, respectively, invocations from outside and from within a scope.

A remarkable feature of our framework is that it allows to discipline the reconfigura-
tion of transactional scopes, hence to predict and control the effects of failures in the
reconfigured system.

We build up on ATc (after Attribute-based Transactional calculus) [1], a CCS-like
process calculus designed to model dynamic SOC transactions featuring EJB transac-
tional attributes [7, 6]; ATc and EJB attributes are summarised in § 2. § 3 yields the main
contribution of the paper, namely the definition of a class of observers which induces
suitable testing equivalences to compare ATc systems as shown in § 4.

2 Background

The ATc calculus presented in [1] takes inspiration from the Container Managed Trans-
actions (CMT) mechanism of Enterprise Java Beans (EJB). Hereafter, the terms con-
tainer and service provider which refer to the environment where methods and services
are executed, will be used interchangeably.

An ATc container associates each service interface to a transactional attribute (at-
tribute, for short) which specifies (i) the ‘reaction’ of the system upon invocations (e.g.,
“calling the service from outside a scope throws an exception”), and (ii) how scopes dy-
namically reconfigure (e.g., “the invoked service is always executed in a newly created
scope”). On the other hand, also the invoking party can specify which attribute must be
supported by the invoked service. This is natural in SOC where, typically, the service
properties are mutually negotiated between requester and provider.

The set of attributes is

A
def
= {m, s, n, ns, r, rn} (attributes)

The intuitive semantics of each a ∈ A (attributes range over a, a1, a2, . . .) is in Table 1.
An ATc process is a CCS-like process with three additional capabilities: service invoca-
tions, transactional scoping, and compensation installation. The setP of ATc processes
is given by the following grammar

P,Q ::= 0 | νx P | P | Q | !P | s K A.P | 〈〈P〉〉Q | π ↓ Q.P | err (processes)

2

where s, s′, . . . range over a set of service names S while x, y, z, . . . range over a channel
namesN (assumed to be both countably infinite and disjoint), u ranges over S∪N , and
π is either x or x. We assume x = x. Restriction νx P binds x in P; we denote the sets of
free and bound channels of P ∈ P by fc(P) and bc(P). The standard process algebraic
syntax is adopted for idle process, restriction, parallel composition, and replication.
Process s K A.P invokes a service s required to support one of the attributes in A ⊆ A;
a scope 〈〈P〉〉Q consists of a running process P and a compensation Q (confined in the
scope) to be executed only upon failure (scopes can be nested); π ↓ Q.P executes π and
installs the compensation Q in the enclosing scope (if any), then behaves as P; finally,
err represents a run-time failure (err cannot be used by programmers).

A system

Γ ` P with Γ = {γ1, . . . , γn} (systems) γ : S → A×P (containers)

is a process P within an environment Γ, namely within a set of containers. A container is
a finite partial map that assign an attribute and a “body” to service names. When defined,
γ(s) = (a, P) ensures that, if invoked in γ, s supports the attribute a and activates an
end-point that executes as P. Environments may offer different implementations of s
and support different attributes. Henceforth we write P ∈ Γ(s, A) for ∃γ ∈ Γ ∃a ∈ A :
γ(s) = (a, P) and P ∈ Γ(s, a) for P ∈ Γ(s, {a}).

The semantics of communications is given in terms of contexts; C[◊] is scope-
avoiding (s-a, for short) if there are no P,Q ∈ P and C′[◊] s.t. C[◊] = C′[〈〈◊ | P〉〉Q].

C[◊] ::= ◊
∣∣∣ 〈〈C[◊] | P〉〉Q

∣∣∣ P | C[◊]
∣∣∣ C[◊] | P (contexts)

The reduction relation of ATc processes (i.e.,→) is the smallest relation→⊆ P×P
closed under the following axioms and rules:

C[〈〈π ↓ Q.P〉〉R] | C′[〈〈π̄ ↓ Q′.P′〉〉R′] → C[〈〈P〉〉R|Q] | C′[〈〈P′〉〉R′ |Q′] (p1)

C[〈〈π ↓ Q.P〉〉R] | C′[π̄ ↓ Q′.P′] → C[〈〈P〉〉R|Q] | C′[P′], if C′[◊] is s-a (p2)

C[π ↓ Q.P] | C′[π̄ ↓ Q′.P′] → C[P] | C′[P′], if C[◊] and C′[◊] are s-a (p3)

P→ P′

P | R→ P′ | R
P→ P′

νx P→ νx P′
P ≡ P′ → Q′ ≡ Q

P→ Q
(p4÷ p6)

The → relation is defined up-to a standard structural congruence relation ≡ (which is
extended to contexts). In (p1÷ p3), sender and receiver synchronise regardless the
relative nesting of their scopes. Upon synchronisation, compensations are installed in
parallel to the other compensations of the enclosing scope; if C[◊] is s.a. then compen-
sations are discarded.

3

The reduction relation of ATc systems (i.e., ;) is defined below, assuming C[◊] ,
0.

P→ P′

Γ ` P ; Γ ` P′
m ∈ A C[◊] is s-a

Γ ` C[s K A.P] ; Γ ` C[err]
(s1/s2)

R ∈ Γ(s, {s, n, ns} ∩ A) C[◊] is s-a
Γ ` C[s K A.P] ; Γ ` C[P] | R

R ∈ Γ(s, {r, rn} ∩ A) C[◊] is s-a
Γ ` C[s K A.P] ; Γ ` C[P] | 〈〈R〉〉

(s3/s4)

P = C[〈〈s K A.P1 | P2〉〉Q] bc(P) ∩ fc(R) = ∅ R ∈ Γ(s, {m, s, r} ∩ A)

Γ ` P ; Γ ` C[〈〈P1 | P2 | R〉〉Q]
(s5)

n ∈ A
Γ ` C[〈〈s K A.P1 | P2〉〉Q] ; Γ ` C[Q]

(s6)

rn ∈ A ∧ R ∈ Γ(s, rn)
Γ ` C[〈〈s K A.P1 | P2〉〉Q] ; Γ ` C[〈〈P1 | P2〉〉Q] | 〈〈R〉〉

(s7)

The rules above correspond to the informal presentation in Table 1: (s2÷ s4) model
the first column and (s5÷ s7)model the second one. Failures trigger the compensation
when occurring inside a scope (s6) and lead to an error otherwise (s2).

ATc systems do not model communication failures2 and do not provide an explicit
notion of commit for transactions. These aspects are modelled in § 3.

3 Observers for ATc

In this section we provide a theory of testing by defining a notion of observers suitable
for ATcthat interact with systems and possibly cause communication failures. Two sys-
tems are equivalent if they cannot be distinguished by an observers (they “pass the same
tests”).

In § 3.1 we define observers and observed systems, in § 3.2. we give an observa-
tional semantics of ATc, in § 4 we show some motivating examples.

3.1 Observed Systems

The class of observers defined in this section is used to model communication failures
and define successful computations. An observer is derived by the following grammar:

O ::= 0
∣∣∣ X ∣∣∣ π.O ∣∣∣ Eπ.O ∣∣∣ O + O

∣∣∣ rec X.O
∣∣∣ X (observers)

The structural congruence for observers is the smallest equivalence relation closed
under the monoidal axioms of + and it is denoted as ≡o.

We consider sequential observers. Failing and successful tests are represented by 0
andX, respectively; prefix π.O allows observers to communicate with the system, while
prefix Eπ.O causes the failure of π in the system and continues as O; observers can be
composed with the (external) choice operator + and recursively defined as rec X.O
(where the occurrences of X in O are supposed guarded by prefixes). An observer is a
process that can interact with a system over its (free) channels and trigger failures in

2 The relation ; only considers errors due to misuse of attributes.

4

the communications (e.g., to check that failures are correctly handled). Since observers
cannot be composed in parallel, they do not communicate among themselves. This,
and the absence of name passing in ATc, allow us to avoid using name restriction in ob-
servers. Moreover, observers do not run in transactional scopes and they are not allowed
to invoke services; they are used to model communication failures so to scrutinize the
transactional behaviour of ATc systems.

Let systems be ranged over by S , S ′, . . .; the set States of observed systems is the
set of pairs made of a system S and an observer O, written as S ‖ O.

The reduction relation of ATc observed systems (i.e.,) is the smallest relation
satisfying the following axioms (where C[◊] is s-a in (os1/os2)):

Γ ` C[π ↓ Q.P] ‖ π.O Γ ` C[P] ‖ O Γ ` C[〈〈π ↓ Q.P〉〉R] ‖ π.O Γ ` C[〈〈P〉〉Q|R] ‖ O (os1/os2)

Γ ` C[π.P] ‖ Eπ.O Γ ` C[err] ‖ O Γ ` C[〈〈π.P | R〉〉Q] ‖ Eπ.O Γ ` C[Q] ‖ O (os3/os4)

S ‖ X S ‖ X
O ≡o O1 S ‖ O1 S ′ ‖ O2 O2 ≡o O′

S ‖ O S ′ ‖ O′
(os5/os6)

S ; S ′

S ‖ O S ′ ‖ O
S ‖ O S ′ ‖ O′

S ‖ O + O′′ S ′ ‖ O′
(os7/os8)

Rules (os1/os2) model a communication step involving the system and the observer.
Communication failures occurring outside a scope yield an error (os3); failures oc-
curring inside a scope trigger the compensations associated with the enclosing scope
(os4). Rule (os5) signals when a test is passed, and (os6) is the usual rule for con-
gruence. Rule (os7) models a step due to transitions of the system that do not involve
the observer. The interactions of the system with non-deterministic observers are de-
fined by rule (os8); notice that, by (os5), if O = X and O′ = 0, then O′′ is discarded.

Example 1. Consider a scenario where process P acts as a proxy of a shared resource
for a client (which are not explicitly represented):

R = lock ↓ unlock.(quit.unlock).

R interacts with the resource to acquire a lock. This action is associated to compensation
unlock whose aim is to release the resource if an error interrupts the normal execution
flow. The client is granted to use of the resource until she sends message quit. Finally
the resource is released (unlock). Consider the observer

O = lock.(Equit.unlock.X)

that checks if the resource, after having been acquired, is released in case of failure
of the clients’ request to quit (action Equit). Notably, for any Γ, the observed system
Γ ` R ‖ O does not pass the test since the compensation is discarded by rule (os1) and
O never reaches state X. Observed system Γ ` 〈〈R〉〉 ‖ O instead is satisfactory since the
compensation, installed by (os2), can release the resource. �

The set Comp of computations (ranged over by c) is the set of (possibly infinite)
sequences of states S 0 ‖ O0, · · · , S n ‖ On, · · · such that S i ‖ Oi S i+1 ‖ Oi+1 for each
i.

5

3.2 Testing Equivalences for ATc

The basic elements of the testing theory are the notions of successful and non-divergent
computation. Intuitively, a computation is successful if the test is passed (i.e., the cor-
responding observer halts with X). Non-divergent computations are successful compu-
tations that reach X before the occurrence of an error. We now cast the basic notions of
the testing theory to ATc observed systems.

Definition 1. Let O % X stand for O = X + O′ for some observer O′.

– S ‖ O ∈ States is successful if O % X;
– Γ ` P ‖ O ∈ States is diverging if P = C[err] for a context C[◊];
– c ∈ Comp is successful if it contains a successful state, unsuccessful otherwise;
– c = S 0 ‖ O0, S 1 ‖ O1, . . . , S n ‖ On, . . . diverges if either c is unsuccessful or there

is i ≥ 0 such that S i ‖ Oi is diverging and O j 6% X for j < i.

As customary in testing theory, the possible outcomes of computations are defined
in terms of result sets, namely (non-empty) subsets of {>,⊥} where ⊥ and > denote
divergence and non-divergence, respectively.

Definition 2. The result set of S ‖ O ∈ States,<(S ‖ O) ⊆ {>,⊥}, is defined by

– > ∈ <(S ‖ O) ⇐⇒ there is a successful c ∈ Comp that starts from S ‖ O,
– ⊥ ∈ <(S ‖ O) ⇐⇒ there is c ∈ Comp starting from S ‖ O such that c is diverging.

As in [4], we consider may- and must-preorders and the corresponding induced
equivalences.

Definition 3. Given a system S and an observer O, we say that

S may O ⇐⇒ > ∈ <(S ‖ O) and S must O ⇐⇒ {>} = <(S ‖ O)

We define the preorders vm (may preorder) and vM (must preorder) on systems:

– S vm S ′ ⇐⇒ (S may O =⇒ S ′ may O), for all observers
– S vM S ′ ⇐⇒ (S must O =⇒ S ′ must O), for all observers.

The two equivalences 'm and 'M corresponding to vm and vM are defined as expected:
'm = vm ∩ v

−1
m and 'M = vM ∩ v

−1
M .

Recall that (i) may-testing enforces some fairness ensuring that divergence is not
“catastrophic” provided that there is a chance of success and (ii) that must-testing cor-
responds to liveness as it requires all possible computations to be successful.

4 Testing Theory for ATc at Work

The following examples show how attributes influence the reconfiguration of transac-
tional scopes and how this is captured by our testing framework.

6

Example 2. Consider the service s with body R defined in Example 1. Let Γ be an
environment such that R ∈ Γ(s, r) and R ∈ Γ(s, rn), namely in Γ there are (at least) two
providers for s with the same body R but supporting different attributes. Consider the
two possible clients, both invoking s and then releasing the resource:

P1 = 〈〈s K {r}.quit〉〉 and P2 = 〈〈s K {rn}.quit〉〉.

The different attributes associated to s generate two different behaviours from P1 and
P2 upon invocation (i.e., activation of endpoint R = lock ↓ unlock.quit.unlock):

S 1 = Γ ` 〈〈quit | lock ↓ unlock.quit.unlock〉〉 by rule (s5)

S 2 = Γ ` 〈〈quit〉〉 | 〈〈lock ↓ unlock.quit.unlock〉〉 by rule (s7).

Remarkably, R runs in the same transactional scope of the invoker in S 1 (due to the
attribute r), while it runs in a different scope in S 2 (due to the attribute rn). Now take
observer O = lock.unlock.X + Equit.unlock.X that checks that the resource is unlocked
both in case of normal execution and failure.

Running S 1 in parallel with O, and S 2 in parallel with O would results, after the
synchronisation on channel lock, respectively in the system

S ′1 = Γ ` 〈〈quit | quit.unlock〉〉unlock and S ′2 = Γ ` 〈〈quit〉〉 | 〈〈quit.unlock〉〉unlock

running in parallel with the continuation unlock.X + Equit.unlock.X of O. �

In Example 2 both S 1 may O and S 2 may O hold true. In fact, there is at least a
successful computation in both scenarios, namely the one in which the client manages
to send quit so that there is no failure. In this case of normal execution both systems
pass the test. On the other hand, an observer can tell apart systems S 1 and S 2 if it
causes the failure of quit. In fact, S ′1 the failure would trigger the compensation unlock
whereas in system S ′2 the observer would remain blocked after the failure since the
compensation is installed in a different scope. It is immediate from the definitions in
§ 3.2 that S 1 must O holds and ⊥ ∈ <(S 2 ‖ O), therefore S 2 must O does not hold.

Example 2 shows that, by specifying different transactional attributes we obtain dif-
ferent reconfiguration semantics (i.e., the scopes of the resulting systems are differently
configured) which may lead to different behaviours when failures have to be handled
and propagated. In general the behaviour of a system changes depending on how its
processes are nested in transactional scopes, as shown in Example 3.

Example 3. Given any environment Γ, it is possible to find P,R,Q ∈ P such that (omit-
ting Γ for simplicity):

〈〈P | R〉〉Q @M 〈〈P〉〉Q | 〈〈R〉〉 e.g., 〈〈a | b〉〉c @M 〈〈a〉〉c | 〈〈b〉〉 with O = Eb.c.X

〈〈P〉〉Q | 〈〈R〉〉 @M 〈〈P | R〉〉Q e.g., 〈〈a〉〉c | 〈〈b〉〉 @M 〈〈a | b〉〉c with O = Ea.b.X

〈〈P〉〉Q | 〈〈R〉〉Q @M 〈〈P | R〉〉Q e.g., 〈〈a〉〉c | 〈〈b〉〉c @M 〈〈a | b〉〉c with O = Ea.b.X

〈〈P | R〉〉Q @M 〈〈P〉〉Q | R e.g., 〈〈a | b〉〉c @M 〈〈a〉〉c | b with O = Eb.c.X

〈〈P〉〉Q | R @M 〈〈P | R〉〉Q e.g., 〈〈a〉〉c | b @M 〈〈a | b〉〉c with O = Ea.b.X

〈〈P | R〉〉Q @M 〈〈P〉〉Q | 〈〈R〉〉Q e.g., 〈〈a ↓ e.d | d.b〉〉c @M 〈〈a ↓ e.d〉〉c | 〈〈d.b〉〉c with O = Eb.e.X.

7

On the left-hand side of each case above we present a counter-example for that case,
where the observer is satisfied for the first process and not for the second one. In words,
transactional scopes do not commute with or distribute over parallel composition. �

5 Concluding Remarks and Related Work

Building on ATc [1], we define a theory of testing to study reconfigurable SOC trans-
actions in presence of failures. The proposed framework captures the interplay between
the semantics of processes and their compensations, and the dynamic reconfiguration
of transactional scopes due to the run-time invocation of new services.

Transactional attributes of EJB have been adapted to SOC transitions in [1] where
ATc has been introduced. The primitives of ATc allow one to determine and control
the dynamic reconfiguration of distributed transactions so to have consistent and pre-
dictable failure propagation. Also, in [1] it has been given a type system for ATc that
guarantees absence of failures due to misuse of transactional attributes.

A comparison of the linguistic features of ATc wrt other calculi featuring distributed
transactions has been given in [1]; StAC [3] and CJoin [2] possibly are the closest cal-
culi to ATc as they feature arbitrarily nested transactions and separate process commu-
nication from error/compensation. CJoin offers a mechanism to merge different scopes
but it is not offering the flexibility of the transactional attributes of ATc. To the best of
our knowledge, none of the calculi proposed in literature has given a testing semantics
(in [5] testing equivalence is given for the Join calculus but not adapted to Cjoin).

One of the limitations of our approach is the lack of link mobility à la π-calculus;
the extension of our approach to a name passing calculus is left as future work. Other
interesting extensions would be to allow the communication of attributes and a prim-
itive enabling a service s to make a parametrized invocation of a service s′ using the
same attribute supported by s (recall that attributes are when services are published in
containers). Also, the interplay of attributes with the behaviour of observed systems de-
serves further investigation as in some contexts it could be possible to inter-change the
attributes obtaining the same observed behaviour.

References
1. L. Bocchi and E. Tuosto. A Java inspired semantics for transactions in SOC. In TGC 2010,

LNCS. Springer-Verlag, 2010. To appear.
2. R. Bruni, H. Melgratti, and U. Montanari. Nested commits for mobile calculi: extending Join.

In J.-J. Lévy, E. Mayr, and J. Mitchell, editors, IFIP TCS 2004, pages 563–576. Kluwer, 2004.
3. M. Butler and C. Ferreira. An operational semantics for StAC, a language for modelling

long-running business transactions. In R. De Nicola, G. Ferrari, and G. Meredith, editors,
Coordination 2004, volume 2949 of LNCS, pages 87–104. Springer-Verlag, 2004.

4. R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical Comput.
Sci., 34(1–2):83–133, Nov. 1984.

5. C. Laneve. May and must testing in the Join-Calculus. Technical Report UBLCS-96-4, De-
partment of Computer Science University of Bologna, 1996.

6. D. Panda, R. Rahman, and D. Lane. EJB 3 in action. Manning, 2007.
7. Sun Microsystems. Enterprise JavaBeans (EJB) technology, 2009. http://java.sun.com/
products/ejb/.

8

