Timed Runtime Monitoring for
Multiparty Conversations

Rumyana Neykova, Laura Bocchi, Nobuko Yoshida

On the importance of time

Messages

Dec 22, 2010 10:18 PM

“Jonn?"

| TR EBN X

A >
Il be there in 5 minutes. if not, read

>

On the importance of time

» Web services (timeouts):

Twitter Streaming APl: “Reconnect no more than twice every
four minutes, or three times per six minutes”

» Busy waiting

Sensor network: “Main sources of energy inefficiency in Sensor
networks are collisions and listening on idle channels™

» Protocol Specifications

Experience with industry partners (OOI, Cognizant): “More
than half of the protocols contain time constraints”

4.5.3.2. Timeouts . . « «¢ ¢ &« ¢ & ¢ ¢« o o o e o e s e o e 65
4.5.3.2.1. 1Initial 220 Message: 5 Minutes 65
4.5.3.2.2. MAIL Command: 5 Minutes 65
4.5.3.2.3. RCPT Command: 5 Minutes 65
4.5.3.2.4. DATA Initiation: 2 Minutes 66
4.5.3.2.5. Data Block: 3 Minutes « . . 66
4.5.3.2.6. DATA Termination: 10 Minutes. 66
4.5.3.2.7. Server Timeout: 5 Minutes. 66

Session Types Premises

“...Session Types structure a series of interactions in a simple
and concise syntax and ensure type safe communication.”

Projection

Python

Global
Types

Local Types

Multiple
Languages

Alice — Bob: (Nat).
Bob — Carol: (Nat).end

TBob =?(Alice, Nat);
!(Carol,Nat);end

Pgob = s?(Alice,x);
s!(Carol,x);0

Timed Session Types Premises?

DLIJIVIN — OINRUULVIURNLU OCWWULINULL Ur CLUIVIIVIUNICAITIVUIN

“...Session Types structure a series of interactions in a simple
and concise syntax and ensure type safe communication.”

TIMED SESSION = STRUCTURED SEQUENCE OF PUNCTUAL

CUIVIIVIUNICATIVIN

unctual pe safe

Timed Session Types Monitoring

L. Bocchi et al., Concur’l4]

Timed Multiparty Session Types * @ Scribble

Laura Bocchi, Weizhen Yang, and Nobuko Yoshida

Imperial College London a p g t h O n |

Abstract. We propose a typing theory, based on multiparty session types, for modular
verification of real-time choreographic interactions. To model real-time implementa-
tions, we introduce a simple calculus with delays and a decidable static proof system.
The proof system with time constraints ensures type safety and time-error freedom,
namely processes respect the prescribed timing and causalities between interactions. A
decidable condition, enforceable on timed global types, guarantees global time-progress ”

“r validated processes with delays, and gives a sound and complete characterisation of
w class of CTAs with general topologies that enjoys global progress and liveness.

Verification Framework for Structured Punctual Programming

Verification Framework for
Structured Punctual Programming

Timed Global
@ Scribble Step 1 Protocol

Projection
Z _ o Fresetien

Timed Local Timed Local Timed Local
Step 2| specifications Specifications Specifications

Timed Endpoint | | | Timed Endpoint | | | Timed Endpoint
ﬁ pl:]’[hOﬂ Step 3 Program Program Program
Detect /R ecover Step 4 | Timed Monitor «« | Timed Monitor « | Timed Monitor (<

Safe Network

Content\ Contributions

|. Check properties on Scribble protocols
2. Introduce timed primitive for Python programs

3. Detection and Recovery from violated time constraints

@Scribble H:Rabbit
@ python 25

Part 1: (& Scribble

|. Check properties on Scribble protocols

Meet Scribble

What is Scribble?

Scribble is a language to describe application-level protocols among communicating systems.

A protocol represents an agreement on how participating systems interact with each other.
Without a protocol, it is hard to do meaningful interaction: participants simply cannot
communicate effectively, since they do not know when to expect the other parties to send
data, or whether the other party is ready to receive data.

However, having a description of a protocol has further benefits. It enables verification to
ensure that the protocol can be implemented without resulting in unintended consequences,
such as deadlocks.

Find out more ...

Language Guide Specification

- ~ -
Describe ¢ Verify 1&
Scribble is a language Scribble has a theoretical foundation,
for describing based on the Pi Calculus and

multiparty protocols Session Types, to ensure that

. L]
iject e N
Endpoint projection is
the term used for
identifying the

An example

module examples;

global protocol HelloWorld(role Me, role World) {
hello(Greetings) from Me to World;
choice at World {
goodMorning(Compliments) from World to Me;

}or {
}

goodAfternoon(Salutations) from World to Me;

A very simply example, but this illustrates the basic syntax for a hello world interaction, where
a party performing the role Me sends a message of type Greetings to another party performing
the role 'World', who subsequently makes a decision which determines which path of the
choice will be followed, resulting in a GoodMoming or GoodAfternoon message being
exchanged.

Monitor Q

Use the endpoint
projection for roles
defined within a

Implement =

Various options exist, including (a)
using the endpoint projection for a
role to generate a skeleton code, (b)

A protocol in Scribble

global protocol TempMeasurement (
role M, role S,

task from M to S;

rec Loop
result
notify
choice
more
more

{

from S
from S
at MA{

from M
from M

Master as M

role R) {
to R;

to M;

to S;

to R; e

continue Loop;

} or {

end from M to S;
end from M to R;

}

Sensor as S

Repo as R

result

task
notify
more _ -~
§ ~
N N
end™ O~ _
~ ~
~ ~

Scribble with Time Constraints

global protocol TempMeasurement (
role M, role S, role R) {

task from M to S [tm<l;reset][ts==1;reset];

rec Loop {
result from S to R ﬁ\\\\\\\///ﬂ tm: the time at M
[ts==5] [6<tr<6];

notify from S to M; ts:thetime at S

[ts==5] [6<tm<6] ; time constraints
choice at M {

tr: the time at R

more from M to S
[tm<7] [ts==7;reset];
more from M to R;

Sensor as S

[tm<7;reset] [ts==7;reset] Master as M

continue Loop; task
} or {

end from M to S Rec

[tm<7] [ts==7;reset];
end from M to R
[tm<7;reset] [ts==7Treset];

¥

A 4

Repo as R

result

Punctual Global Protocols

“if all programs in a system are validated against a well-formed global
protocol, then the global conversation will respect the prescribed timing and
causalities between interactions.

Timed Multiparty Session Types ™

ILaura Bocchi, Weizhen Yang, and Nobuko Yoshida

Imperial College London

Abstract. We propose a typing theory, based on multiparty session types, for modular
verification of real-time choreographic interactions. To model real-time implementa-
tions, we introduce a simple calculus with delays and a decidable static proof system.
The proof system with time constraints ensures type safety and time-error freedom,
namely processes respect the prescribed timing and causalities between interactions. A
decidable condition, enforceable on timed global types, guarantees global ime-progress
for validated processes with delays, and gives a sound and complete characterisation of

a new class of CTAs with general topologies that enjoys global progress and liveness.

punctual ? type safe

Progress of timed processes
) t=6:A.send(B).deliver()

global protocol posthfice(}ole A, role B){
deliver () from A to B [xa>3;] [xb<5];
confirm() from B to C;

} : .
- C will wait forever

t=4: A send(B).deliver()

global protocol postOffice(role A, role B){
deliver () from A to B [xa<b;] [xb>2 and xb<5;];
confirm() from B to A [xb>6 and xb<7];

} AN

' B is stuck

Punctual Global Protocols

“if all programs in a system are validated against feasible and wait-free
global protocol, then the global conversation will respect the prescribed
timing and causalities between interactions. “

Timed Multiparty Session Types *

ILaura Bocchi, Weizhen Yang, and Nobuko Yoshida

Imperial College London

Abstract. We propose a typing theory, based on multiparty session types, for modular
verification of real-time choreographic interactions. To model real-time implementa-
tions, we introduce a simple calculus with delays and a decidable static proof system.
The proof system with time constraints ensures type safety and time-error freedom,
namely processes respect the prescribed timing and causalities between interactions. A
decidable condition, enforceable on timed global types, guarantees global time-progress
for validated processes with delays, and gives a sound and complete characterisation of
a new class of CTAs with general topologies that enjoys global progress and liveness.

Remark: Monitored networks guarantee safety and fidelity,
but not progress

Well-Formedness 1: Feasibility

A protocol is feasible if every partial execution can be extended to

a terminated session

M1 from P to C [xp>3;] [xc==4];
M2 from P to C;

M1 from P to C [xp>=3; =xp<4; Jlxc==4];

M2 from P to C;

rec Loop {
M1 from P to C
[xp<2;reset] [xc==3; reset];
M2 from P to S [Xp<5 1;

continue Loop;:}
P ' P sends at t=4

rec Loop {
M1 from P to C
[xp<2;reset] [xc==3; reset];
M2 from P to S [xp<2;]
continue Loop;}

09

Q

Q

Well-Formedness 2: Wait-freedom

A protocol is wait-free when a receiver never has to wait for

the message.

B:assumes receive at t=5 (/
delay(14)

A sends at t=8

v assumes receive at t=19

M1 from A
M2 from B

M1 from A
M2 from B

to
to

to
to

[Xa<10;][Xb<26;];
[xD<20;]; y/

[xa<10] [xa>10 and xb<20]; |
[xb<20;]; J

Checker for feasibility and wait-freedom

Step 1: Building a dependency graph

8 :?more(m.w)

7 !more(m.w)

5 'morgim.a)

6 :"more(m.a)

2 :Task(m,w)) 1 :‘A’mmf‘yfw.mw .
: «) 9 Mend(m,a)
I Maskimw) 3 :Inotify(wm) P ’
) 10 :Tend(m.a)
Step 3: Index Clocks x
D 9 11 stend(m.w) . . .
» 1/0 Dependencies A — » Consider the following example:
¥ . > . M1 from A to B [xa>=5;xa<=10;reset] [xb<7];
sfromA:IoB..(s:nde.r,recelver) !(sender, receiver) M2 from A to C [xa»>=5.xa<=10.] [xc<10];
4 yntax ependencies L4
nl;n2:add_ed \ {xa + xal_1+ xal_2/xa}

Step 4 and 5: Formulas

Recursion:
'dd_edge frol

O Feasibility: e i
ForAll(x_1..x_n,
Implies (pred(n),

Exists (n,
constr(n)))))

SMT Solver

if resetInfon = {x,;}

otherwise

7 Wait-Freedom:

Implies(pred_constr(n),
constr(n),

\ x1<xn ...x_n-1 < xn) sat/U[!SQt

@'
/]

Step 1: Building a dependency graph

8 :?more(m,s)

Sensor as S

Master as M Repo as R
I task

Rec l
notify

» 1/O Dependencies 12 :7end(m.s)
from A to B : !(sender, receiver) --> !(sender, receiver)

» Syntax dependencies
nl;n2:add _edge(nl, n2) if subj(nl)==subj(n2)
» Recursion:
add_edge from the last to the first node for a participant

» Depth-first-search with one-unfolding for a recursion

» Build dependency constraint on each node using the
information on constraints and resets in the path to n

Step 3: Index Clocks

» Consider the following example:

M1 from A to B [xa>=5;xa<=10;reset] [xb<7];
M2 from A to C [xa>=5;xa<=10;] [xc<10];

\ {xa +xal 1+ xal 2/xa}

1 :!M1(a,b) 1 :!M2(a,c) 1:7M2(a,c)
()
O O O

(xal_1>=5; xal 2<=10) (xa2_1>=5;xa_2 1<=10) xcl1<10

» The dependency reset for node n:
D wen B, p,7) + T if resetInfon = {z,;}
D wen B@,p,7) otherwise

R(n,p,j) = {

Step 4 and 5: Formulas

@ Feasibility: SMT Solver

ForAll(x_1..x_n,

Inplios y—

pred_constr (n),

Exists (n,
And (constr (n), \ Z'g

x1<xn ...x_n-1 < xn))))

@ Wait-Freedom:

Implies (
And (pred_constr (n),

constr(n)), Sat/unsat

x1<xn ...x_ n-1 < xn)

pred(n) - clock variables for nodes preceding node n
pred_constr - time constraints for nodes preceding n
constr(n) - time constraints for node n

delay(t).P @

We present a timed conversation API for real-time
processes in Python which allows programmers to:

» (I) express idle delays: delay the execution of an action to
match a prescribed timing while avoiding busy wait

delay(t);

» (2) mark computation intensive functions: interrupt an
ongoing computation to meet an approaching deadline.

TimeoutException

with timeout (t):
c.send.result(’S”’)

timeout parameter on a function

self.find_work(timeout=t)

Example: Timed process

def sensor_proc():

c = Conversation.join(...)

- sleeps for | sec
task = c.receive(’M?)

while conv_msg.label != ’end’:
c.delay (5)

data = self.sample ()
c.send(R).result (data)
c.send (M) .notify(data)

Block should be
conv_msg = c.receive(’M’ %’ completed

In 2 sec

throws TimeoutException

def master_proc ():
¢ = Conversation.create (...

Example: Untimed process

c.send(S).task ()
while more_data () :
data = c.receive (S)
c.send (S) .more ()
c.send (R) .more ()

takes< | sec
or TimeoutException

No way to recover if
the function

c.send (S).end ()
c.send (R).end ()

takes > 2sec

Monitoring: Detection and Recovery

#time_constraint: x<20
self.find work(timeout = 21)

#time_constraint: x<20
c.delay(21)

#virtual time = 21
#time_constraint: x<20
self.find work()

#virtual time = 15
self.find work(timeout = 20)

Wrong API:
Timeout\delay

Wrong execution:
Late action

Wrong execution:
Early action

Enforcement and recovery

» If the APl action is send, the monitor buffers the message and
forwards it to the network at the time specified in the constraint.

» If the APl action is receive, the monitor sleeps and wakes up at the
time specified at the time constraint, then it reads the message from

the network.

» If the clock constraint has a lower bound (x 2 n), the monitor
introduces a delay of exactly n time units

» If the clock constraint has an upper bound (x < n), the monitor
inserts a timeout (a timer triggering a TimeoutException).

prescribed action

clock constraint

pre-action

post-action

s.send
s.send
sS.recv

S.recv

T>n
r<n
rT>n

r<n

s.timeout(n — Teyr)

s.sleep(n — Teyr)

s.sleep(n — Teyr)

s.timeout (n — Teyr)

Benchmarks

A Timed Monitor is not Transparent

» Transparency: a program that executes all actions at the right times
when running unmonitored will do so when running monitored

The Observer Effect:

i

1\

ifs

~- AWKWARD

SWENCE.

p

THE HEISENBERG AWKWARDNE SS

PRANCIPLE:

UNTIL you OBSERVED

IT WASN'T AWKWARD

~

Applicability: Recursive protocol with resets

global protocol TempMeasurement (

—4— Monitor == Unmonitored role M, role S, role R) {

N
o

task from M to 5;
rec Loop {
result from S to
notify from S to
choice at M{
more from M to
more from M to
continue Loop;
} or {
end from M to S;
end from M to R;

10 20 30 40 50 60 70 80 90 }
NUMBER OF RECURSIVE ITERATIONS PER PROTOCOL

G
=%

TIME OF PROTOCOL EXECUTION (S)
o =
T wn

o

Conclusions:

» The overhead is ~1.3%
» A monitor with resets is transparent if ...

Monitor Tuning: M_overhead < M_treshold

Restrictions: Recursive protocol without resets

global protocol ClientServer (
role C, role S)

{[xQ@C: x<c][x@S: x=c,]
ping(data) from C to S;
{[x@C: x<2xc] [x@S: x=2xcC]
ping (data) from C to S;
{[x@C: x<3*c] [x@S: x=3*cC]
ping(data) from C to S;
{[x@C: x<3xc] [x@S: x=4xc]
ping(data) from C to S;

== Monitored == Unmonitored

160
140
120
100
80
60
40

{ [x@C: x<200xc] [x@S: x=200: 20

ping(data) from C to S;

NUMBER OF CORRECT INTERACTIONS

20 30 40 50 60 70 80 90 100
TIME BETWEEN EACH INTERACTION (IN MS)

Conclusions:
» 85% of the interactions are completed

» A function that calculates the maximum number of resets

Related and Future Work

Timed specifications

» Guermouche et al. Towards timed requirement verification for
service choreographies, IEEE (2012)
» Watahiki et al.: Formal verification of business processes with tem-

Verification tools

» Run-time assertion checking of data- and protocol-oriented
properties of java programs [Stijn de Gouw, SAC'13]
» Mop: an efficient and generic runtime verification framework

Advantages

» Combination of control flow checking and temporal properties in
the same global specification

» Via its formal basis it allows to combine static and dynamic
enforcement

Conclusion

Feasibility and wait-freedom checker for Scribble protocols

» Terminating algorithm for checking time properties
» Integration with SMT solver

Timed Conversation API

» Modelled by the time calculus, presented in [Timed Multiparty
Session Types, Laura et al., Concur’14]
» Early error detection of wrongly-timed API calls

Timed Monitoring

» Error detection allows rigorous blame assignment analysis and self-
recovery via error handling
» Automatic error recovery for early actions

Time for questions

Session types for intergalaxy communication.

protocol HelloAlien(humans, aliens)

: {th > 3and th < 5} {ta > 6 ta < 5}

Hello() from humans to aliens;
}

Demo

Extending the Scribble checker

Require: D = build_time_graph(AST)
1: for timed_node in D do
2 for (constraints, resets) in dfs(root, timed node) do
3 constraints, resets = index(constraints, resets)
4 expr = build_z3_expression(constraints, resets)
5: result = expr.is_satisfiable()
6 if not result then
7 return False
8: return True

> Step 1

> Step 2
> Step 3
> Step 4
> Step 5

Step 2 and 3: Index Clocks E

» Consider the following example:
A-->B {xa>=5;xa<=10; reset();} {xb<7}

A-->C {xa>=5;xa<=10; xc<10;} xa: xa + xal_1+xal_2

A-->B {Xa>=5;xa<=10;}
Xa: xa+ xal_1+xal_2

» Rename each clock w.r. t the current virtual time

Virtual tim rac :
R(n,p,j) _ fn EM}?D »Ps .] lfI'eSInfO(n) — {xPj}
vem R(@,p, j) otherwise

The dependency reset of n is:

R(n,p,j)=) R(',p,})
n’eM

Checking Time Properties

Require: D = build_time_graph(AST)
1: for timed node in D do
2 for (constraints, resets) in dfs(root, timed node) do
3 constraints, resets = index(constraints, resets)
4 expr = build_z3_expression(constraints, resets)
5: result = expr.is_satisfiable()
6 if not result then
7 return False
8: return True

> Step 1

> Step 2
> Step 3
> Step 4
> Step 5

12:%end(m,w)

A Streaming Protocol

l Master M | Worker W A ator A

xu<]l xm:=0} - oo +TASK<log,string>—p | xw=1 xu:=

- - -rec Loop

_ pemfpes=a= END<data>------p-------------o---- b»---
B MORE<datas----=-4-=========mmmmmuu- >---|23Sn m=jo

- - - Loop

A real PhD Day

global protocol Purchase(role B, role S, role A)
{
login(string:user) from B to S;
login(string:user) from S to A; title
authenticate(string:token) from A to B, S;
choice at B
{request(string:product) from B to S; quote quote
(int:quote) from S to B;}
or
{buy(string:product) from B to S
delivery(string) from S to B; }
or
{quit() from B to S; }}

Quote div 2

sender time constraint >

receiver time constraint >

from A to B [delta_sender] [delta_receiver]
delta::=t>n | t<n | t==n | tandt | tort | reset

Step 1: Building a dependency graph

Algorithm 1 Building Time Dependency Graph G from Scribble AST

1:
2:

3
4
5:
G:
7
8
9

10:
11:
12:

13:
14:
15:

16:
17:

G = empty()
for p in participants do visited|p]

= I

: for node in AST: do

switch node do
interaction:
nl, n2 = get_nodes(node)
G.add_vertex(nl,n2)
connect_parent(nl)
connect_parent(n2)

enter choice:
for p in participants do

exit choice:
for p in participants: do
while visited[p][-
1]!=C do
visited[p].pop();
enter rec:

18:
19:
20:

21:
22:
23:

27:
visited[p].append(Choi@s;
29:

30:
31:
32:

l=get_rec_label()
for p in participant do
visited[p].append(RecNode(l))
continue:
1 = get_continue_label()
for child in G.children(RecNode(l))
do
p=subj(child)
parent = visited[p][-1]
connect_parent(parent,
child)
function CONNECT_PARENT (node)
i=-1; p=subj(node)
while visited[p][i]!= Choice do

parent=visited[p][i]
G.add_edge(parent, node)
visited[p].append(node)

prescribed action

Governance

Interceptor

annotate

Commitment
lnteroeprot
annotate
_———
Monitor —

I Messaging Client l

Error prevention and recovery

e —
controf
Dispatcher] Knoszvalse:ge
Policy Interceptor :'W’ (ACI_)

Specs
(Scribble)

I‘
aaoanzasaans
\
Nevenene

Message Broker

clock constraint

pre-action

post-action

s.send
s.send
s.recv

S.recv

T>n
xr<mn

i n

IN IV A

i n

s.sleep(n —

s.timeout (n — Teyr)

xcur)

s.sleep(n — Teyr)

s.timeout(n —

xcur)

Well-Formedness 1 @

Feasibility:

» a protocol is feasible if every partial execution can be extended to a
terminated session.

global protocol fooBar (role A, role B)
[xa@A: xa<10] [xb@B: xb<5] y/
msg(string) from A to B;

[t 1s your turn ...

Session Types for Runtime Verification

» Methodology)
Global Protocol
Developers design

Specification Projection

protocols in a dedicated (Scribble)
. Local Local
language - Scribble ’speéﬁi'nons

Well-fomedness is checked

- v

b Scribble tOOIS Implementation Source Code Source Code Source Code || Static

y (Java, Scala, C, A o i c " c 7 Type

. Ocaml, Fython) gx:méon oazzzisrenzelon ngﬁ:is;elon Checker
Protocols are projected g .
into local types Verifying
Communication)

Local types generate (Static & Dynamic) @
monitors

J
r
Safe Network /_)

session lype]

Examples of a non feasible processes @

{assertion: payment + overdraft>=1000} » The monitor passes
offer(payment: int) from C to ; {‘type’:param, ...}

to the upper layers

@{deadline: 5s}

offer(payment: int) from C to |; » Upper layers recognize and

process the annotation
type or discard it

» Stateful assertion
rec Loop {

@{guard: repeat<10}
offer(payment: int) from C to [;

Content

|. Writing correct global protocols with Scribble Compiler

