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—— Abstract

Systems of communicating automata are prominent models for peer-to-peer message-passing over

unbounded channels, but in the general scenario, most verification properties are undecidable. To
address this issue, two decidable subclasses, Realisable with Synchronous Communication (RSC) and
k-Multiparty Compatibility (k-MC), were proposed in the literature, with corresponding verification
tools developed and applied in practice. Unfortunately, both RSC and k-MC are not resilient under
failures: (1) their decidability relies on the assumption of perfect channels and (2) most standard
protocols do not satisfy RSC or k-MC under failures. To address these limitations, this paper studies
the resilience of RSC and k-MC under two distinct failure models: interference and crash-stop failures.
For interference, we relax the conditions of RSC and k-MC and prove that the inclusions of these
relaxed properties remain decidable under interference, preserving their known complexity bounds.
We then propose a novel crash-handling communicating system that captures wider behaviours
than existing multiparty session types (MPST) with crash-stop failures. We study a translation of
MPST with crash-stop failures into this system integrating RSC and k-MC properties, and establish
their decidability results. Finally, by verifying representative protocols from the literature using RSC
and k-MC tools extended to interferences, we evaluate the relaxed systems and demonstrate their
resilience.
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1 Introduction

Asynchronous processes that communicate using First In First Out (FIFO) channels [12],
henceforth referred to as FIFO systems, are widely used to model distributed protocols, but
their verification is known to be computationally challenging. The model is Turing-powerful
for even just two processes communicating via two unidirectional FIFO channels [12].

To address this challenge, several efforts have focused on identifying practical yet decidable
subclasses — those expressive enough to model a wide range of distributed protocols, while
ensuring that verification problems such as reachability and model checking remain decidable.
Most FIFO systems assume perfect channels, which is too restrictive to model the real-world
distributed phenomena where system failures often happen. This paper investigates whether
two practical decidable subclasses of communicating systems, Realisable with Synchronous
Communication (RSC) [20] and k-Multiparty Compatibility (k-McC) [37], are resilient when
integrated with two different kinds of failures. These failure models were originally introduced
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FIFO system (Def 3)
communicating session automata (Def 20)
3k-bounded [37, Def 15]
k-synchronisable [37, Def 17]

k-exht (Def 22) RSC [19, Def 5]
k-ErT (Def 21(1))

weak k-Mct (Def 25)

k-safel (Def 21) k-mcT [37, Def 9] W

Figure 1 Classes of communication systems (since the f{-marked definitions are introduced in the
context of CSA (Def 20), we restrict them accordingly).

in the contexts of contracts [39] and session types [3,6]. We say a system is resilient under a
given failure model if (i) the inclusion remains decidable, and (ii) the verification properties
of interest remain decidable under that failure model.

Failures in communications. A widely studied failure model in FIFO systems is lossy
channels. Finkel [23] showed that the termination problem is decidable for the class of
completely specified protocols, a model which strictly includes FIFO systems with lossy
channels. Abdulla and Jonsson [1] developed algorithms for verifying termination, safety,
and eventuality properties for protocols on lossy channels, by showing that they belong to
the class of well-structured transition systems.

Another type of failure, studied in a more practical setting, occurs when one or more
processes crash. In the most general case, Fekete et al. [22] proved that if an underlying
process crashes, no fault-tolerant reliable communication protocol can be implemented. To
address this, they consider faultless models which attempt to capture the behaviour of crashes
by broadcasting crash messages. Such approaches have been explored in the context of
runtime verification techniques [33] and session types [3,5,6]. In this work, we closely study
a failure model proposed by [3,5].

Restricting the channel behaviour. To define decidable subclasses, many works study how
to restrict read and write access to channels. For two-process (binary) FIFO systems, the
notion of half-duplex communication was introduced in [15], where at most one direction of
communication is active at any time. For such systems, reachability is decidable in polynomial
time. However, generalising this idea to the multiparty setting often yields subclasses that
are either too restrictive or lose decidability.

Di Giusto et al. [19,20] extended this idea to multiparty systems while preserving
decidability, resulting in the notion of systems realisable with synchronous communication
(rsC). They showed that this definition overlaps with that in [15] for mailbox communication.
However, in the case of peer-to-peer communication where the two definitions differ, peer-to-
peer RSC behaviour was proved to be decidable. RSC systems are related to synchronisable
systems [8,10,21], in which FIFO behaviours must admit a synchronisable execution. The
tool ReSCu applies this idea to verify real-world distributed protocols [18].

Another approach to restricting channel behaviours is to bound the length of the channel.
Lohrey [38] introduced ezistentially bounded systems (see also [25,26]) where all executions
that reach a final state with empty channels can be re-ordered into a bounded execution.
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rs?err srldata sr?data rslerr
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Figure 2 The above system S is half-duplex in the absence of errors. However, in case of (any or
multiple) errors, it is no longer half-duplex.

Although many verification problems are decidable for this class of systems, checking if a
system is existentially k-bounded is undecidable, even if k is given as part of the input.

A decidable bounded approach, k-multiparty compatibility (k-MC), was introduced in [37].

This property is defined by two conditions, exhaustivity and safety. Exhaustivity implies
existential boundedness and characterises systems where each automaton behaves the same
way under bounds of a certain length. Checking k-McC is decidable, and the tool k-MC-checker
is implemented and applied to verify Rust [13,34] and OCaml [32] programs.

Combining the two approaches. As far as we are aware, the intersection between expressive,
decidable subclasses and communication failures is less explored. Lozes and Villard [39]
studied reliability in binary half-duplex systems and showed that many communicating
contracts can be verified with this model. Inspired by this, we investigate whether practical

multiparty subclasses, RSC and k-MC, remain robust in the presence of communication errors.

Although failure models such as lossy channels are well studied, the complexity of
verification in their presence is often very high — for instance, reachability in lossy systems
is non-primitive recursive [23]. Our goal is not only to show that RSC and k-MC systems are
resilient, but also that their inclusion remains decidable under failure models, with complexity
maintained from the failure-free case.

This paper extends RSC [19,20] and k-MC [37] by integrating two distinct failure models.

RSC and k-MC systems are incomparable to each other (RSC is not a subset of k-MC and
vice-versa), but both are closely related to existentially bounded systems. Figure 1 illustrates
their relationship with other models.

For failures, first, we consider interferences from the environments by modelling lossiness,
corruption (a message is altered to a different message) and out-of-ordering (two messages
in a queue are swapped) of channels studied in the context of FIFO systems. Secondly, we
consider potential crashes of processes introduced in the setting of session types [3,6].

Let us consider the following simple half-duplex protocol as an example.

» Example 1. The system in Figure 2 is half-duplex under the assumption of perfect channels
[15]. Tt consists of two processes, a sender (s) and a (dual) receiver (r), communicating via
unbounded FIFO channels. A transition srlm denotes that the sender puts (asynchronously)
a message m on channel sr, and similarly, sr?m denotes that message m is consumed by
the receiver from channel sr. Since the channel rs only contains messages after the receiver

receives the end message and has emptied sr, the system satisfies the half-duplex condition.

Moreover, the sender never sends data without having first sent start so the error loop is
never triggered.

Now suppose the channels are prone to corruption. A message data could be altered to
end after being sent. This allows the receiver to react prematurely by sending ack, while the
sender continues sending data. As a result, both channels may become non-empty, violating
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the half-duplex property. Similarly in the presence of other forms of interference, as shown
in Example 6, this system no longer satisfies the half-duplex condition.

Contributions and outline. The main objective of this paper is to investigate whether
multiparty adaptations of half-duplex systems (RSC and k-MC) retain both their expressiveness
for modelling real-world protocols and the decidability of their inclusions, with preserved
complexity, under two distinct kinds of communication failures: interferences and crash-stops.
§ 2 introduces preliminary notions, notably FIFO systems and interference models; § 3
studies RSC under interference, and shows that relaxing certain conditions on matching send
and receive actions retains both expressiveness and decidability (Theorem 19). § 4 examines
k-Mmc with interferences, and proposes a relaxed version, k-wMcC (weak k-MC), by weakening
the safety condition. We prove that checking the k-wMC property remains decidable under
interferences (Theorem 26). § 5 introduces the FIFO systems with crash-stop failures (called
crash-handling systems), and shows that checking RsC and k-wMC under crash-stop failures is
decidable (Theorems 32 and 33); § 6 defines a translation from (local) multiparty session types
(MPST) to crash-handling systems and proves that this translation preserves trace semantics.
This implies the decidability of RSC and k-MC within the asynchronous MPST system
extended to crash-stop failures (Theorem 40); § 7 evaluates protocols from the literature
extending the existing tools with support for interferences; and § 8 concludes with further
related and future work. Proofs are provided in the appendix. The tools and benchmarks
are publicly available from https://github.com/NobukoYoshida/Interference-Tool.

2 Preliminaries

For a finite set 3, we denote by 3* the set of finite words over 3, and the empty word with €.
We use |w| to denote the length of the word w, and w; - wo indicates the concatenation of two
words wy, wy € X*. Given a (non-deterministic) finite-state automaton A, we denote by £(.A)
the language accepted by A. Counsider a finite set of processes P (ranged over by p,q,r,... or
occasionally by rq,ra,...) and a set of messages ¥. In this paper, we consider the peer-to-peer
communication model; i.e., there is a pair of unidirectional FIFO channels between each pair
of processes, one for each direction of communication. In our model, processes act either
by point-to-point communication or by internal actions (actions local to a single process).
Moreover, in this setting, we consider messages to be atomic, akin to letters of an alphabet.

Let Ch = {pq | p # q and p,q € P} be a set of channels that stand for point-to-point
links. Since we are considering the peer-to-peer model of communication, there is a unique
process that can send a message to (or dually, receive a message from) a particular channel.
An action a = (pq, !, m) € Act indicates that a process p sends a message m on the channel
pg. Similarly, a = (qp,?, m) € Act indicates that p receives a message m on the channel gp.
We henceforth denote an action a = (pq, T, m) € Act, where | € {!,?}, in a simplified form as
patm. An internal action c, means that process p performs the action c. We define a finite
set of actions as Act C (Ch x {!,?} x ) U Act, where Act, is the set of all internal actions.

» Definition 2 (FIFO automaton). A FIFO automaton A,, associated with p, is defined as
Ap = (Qp, 9p, qop) where: Q, 1is the finite set of control-states, §, C Qp X Act X Q, is the
transition relation, and qop € Qp s the initial control-state.

Note that in this model, there are no final or accepting states.
The set of outgoing channels of process p is represented by Ch,, = {pq | q € P\ p}.
Similarly, Ch; , = {qp | q € P\ p} is the set of incoming channels of process p.
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Given an action a, an active process, denoted by proc(a), is defined as: proc(pq!m) = p
and proc(pq?m) = q. Similarly, ch(pq!m) = ch(pq?m) = pq.

We say a control state ¢ € Q,, is a sending state (vesp. receiving state) if all its outgoing
transitions are labelled by send (resp. receive) actions. If a control state is neither a sending
nor receiving state, i.e., it either has both send and receive actions or neither, then we
call it a mized state. We say a sending (resp. receiving) state is directed if all the send
(resp. receive) actions from that control state are to the same process. Like for finite-state
automata, we say that a FIFO automaton A, = (Qp,dp, qop) is deterministic if for all
transitions (¢, a,¢'),(¢,a’,¢") € 0p, a = ad = ¢ = ¢". We write ¢ L Gy for
(¢1,01,92) - (gn, Gn, Gn+1) € p. Unless specified otherwise, we consider non-deterministic
automata, allowing mixed states, and all states do not have to be directed.

» Definition 3 (FIFO system). A FIFO system S = (Ap)pep is a set of communicating FIFO
automata. A configuration of S is a pair v = (q; W) where ¢ = (gp)pep s called the global
state with q, € Q, being one of the local control-states of Ay, and where W = (wpq)pqe ch
with wpq € X*.

The initial configuration of S is o = (qo; €) where 5 = (qop)per and we write € for the
|Chl-tuple (e, ..., e). Welet Ay, = (Qp, Jp, gop) be a FIFO automaton. Let S = (Ap)pep be the
system whose initial configuration is 7. The FIFO automaton product(S) associated with S is
the standard asynchronous product automaton: product(S) = (Q, d, qy) where Q = Hpeﬂ” Qp,
7 = (qop)per, and 4 is the set of triples (g1, a, g2) for which there exists p € P such that
(q1p,a,q2,) € 0p and g1, = go, for all r € P\ {p}. An ewecution e = ay - ag---a, € Act”

is an arbitrary finite sequence of actions. We write executions(S) for {e € Act* | vo =

~ for some configuration v}. Given e = ay - as - - a,, we write Act(e) = {a1,as,...,a,}.

Moreover, we say two systems are trace-equivalent if they produce the same set of executions,
ie. S= 8 is as follows: V¢, ¢ € executions(S) < ¢ € executions(S’).

Interferences. In this paper, we do not restrict the study to perfect channels, and instead
consider that they may subject to interferences from the environment. Interferences are
modelled as potential evolution of channel contents without a change in the global state of
the system. As in [39], we model interferences by a preorder over words = C ¥* x ¥*  which
will parametrise the semantics of dialogue systems. We denote by w = w’ if w and w’ are
the contents of the buffer respectively before and after the interferences.

» Definition 4 (Interference model). (from [39]) An interference model is a binary relation
= C X* x ¥* satisfying the following azioms:

Reflexivity Transitivity Additivity Integrity Non-expansion
) w=w w = w! w = w we = wh e w w = w'
a>a w = w" wy - wa = Wi - wh w=¢ lw| > |w']

Axiom Additivity defines that failures can happen at any part of the words; axiom Integrity

says € is the least word; and axiom Non-expansion says that = preserves the size of words.

Based on interferences, we define three failures as follows:
Lossiness: Possible leaks of messages during transmission are modelled by adding the
axiom a >~ €.
Corruption: Possible transformation of a message a into a message b is modelled by
adding the axiom a = b.
Out-of-order: Out-of-order communications are modelled by adding axioms a-b>b-a
for all a,b € X.
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We now define successor configurations for FIFO systems with interferences.

» Definition 5 (Successor configuration under interference). Let S be a FIFO system. A
configuration v = (q'; ') is a successor of another configuration v = (¢; W), by firing the
transition (qp, a, q,) € 0p, written v — " or vy L o', if either: (1) a = pq!m and (a) ¢\ = g
for all r # p; and (b) wy, < wpq - m and w)s < ws for all rs # pq; or (2) a = qp?m and (a)
@ = qr for all r # p; and (b) m - wg, = wqp and wiy < wys for all rs # qp.

The condition (1-b) puts the content to a channel pq, while (2-b) gets the content from
a channel pq. The reflexive and transitive closure of — is %, We write T Lrdedm, Ym+1
for 1 =5 2 Ym —5 Yme1. Moreover, we write (y1,a1 - @2+ Gy Ym+1) C 0 to denote
{(v1,a1,72)s -+ s Yms G Yma1)} € 0. A configuration 7 is reachable if vy — v and we define
RS(S) = {7 [ =}

A configuration v = (¢; @) is said to be k-bounded if for all pq € Ch, |wpq| < k. We say
that an execution e = ejey . .. e, is k-bounded from ~; if 1 <5 v5 ... v — Y41 and for all
1 <i<n+1,; is k-bounded; we denote this as y; N Ynt1-

We define the k-reachability set of S to be the largest subset RSy (S) of RS(S) within
which each configuration v can be reached by a k-bounded execution from 7. Note that,
given a FIFO system S, for every integer k, the set RSy (S) is finite and computable.

» Example 6. Let us revisit the system in Figure 2 and explore each of the interferences
with the following executions (we denote by red the messages subject to interference):

Corruption: Let us consider execution e, = srlstart . sr?start . sr'data . sr?end . rslack .srldata.

Here, the message data has been corrupted to end. Hence, process r incorrectly receives
the message end, and assumes that process s has stopped sending data, while process s
continues to send it.

Lossiness: Consider the execution e, = srlstart . sr?start . srldata . sr?data . srlend.
Here, the message end has been lost, which means process r will be stuck waiting for
process s to either send data or end.

Out-of-order: Let e, = srlstart . st?start . stldata . stlend . st?end . rslack . rs?ack . sr’data.
rslerr . rs?err. In this case, the order of data and end has been swapped in the queue,
which leads to a configuration where the error message is sent.

As shown in [1,23], for communicating automata with lossiness, the reachability set is
recognisable, and the reachability problem is decidable. In the case of out-of-order scheduling,
it is easy to see that the problem reduces to reachability in Petri nets. It is less clear, but it
can also be reduced to Petri net reachability problem in case of corruption. We recall these
proofs in Appendix A. However, the complexity of reachability for these systems is very high
— it is non-primitive recursive for lossy systems [46], and Ackermann-hard for corruption and
out-of-order [14]. Hence, it is still worth exploring subclasses in the presence of errors.

3 RSC systems with interferences

We first extend the definitions of synchrony in systems from [20] to consider possible
interferences. The main extension relates to the definition of matching pairs. Intuitively,
matching pairs refer to a send action and the corresponding receive action in a given execution.
In the presence of interferences, it is not necessary that the same message that is sent is
received (due to corruption), or that the k-th send action corresponds to the k-th receive
action (due to lossiness or out-of-order). Hence we extend the definition of matching pairs.
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» Definition 7 (Matching pair with interference). Given an execution e = ay .. .a,, if there
exists a channel pq, messages m,m’ € ¥ and j, 7', k, k" € {1,...,n} where j < j', and the
following four conditions:

(1) a; = palm; (2) a;r = pq?m/; (3) a; is the k-th send action to pq in e; and (4) aj is
the k'-th receive action on pq in e, then we say that {j,j'} C{1,...,n} is a matching pair
with interference, or i-matching pair.

Note that if m = m’ and k = k', we are back to the original definition of matching pairs
in [19, Section 2], which we shall refer to henceforth as perfect matching pairs. When we refer
to a matching pair, we mean either a perfect or i-matching pair. Moreover, our formalism
allows for a single message to have more than one kind of interference, e.g. the same message
can be corrupted and received out-of-order.

» Example 8. Consider the following execution e = a1 ...as = pqla - qp!b- qp?h - pqlc - pg?c.

For the channel gp, we have a perfect matching pair {2,3} which corresponds to the actions
gp!b and qp?b, the 1% send and receive action along qp. For the channel pq, we see that the
15% receive action is not pq?a, and hence, there is no perfect matching pair corresponding to
pqla. However, in case of interferences, we can have the following cases:

If the message a is lost, i.e., pqla would be a lost action, pglc- pq?c would be a matched

send-receive pair, and therefore, {4,5} would be the corresponding i-matching pair.

If the message a was corrupted to ¢, then, pq?c would be the receive action corresponding

to pqla, and we would have {1,5} as an é-matching pair.

If the trace with an appended action as follows: ¢’ = pqla - qp!b- qp?b - pqlc - pq?c- pq”a,

then it could be that messages a and ¢ were scheduled out-of-order in the channel pq.

Then we have i-matching pairs {1,6} and {4,5}.
We now modify the definition of interactions from [19] as follows.

» Definition 9 (Interaction). An interaction of e is either a (perfect or i-) matching pair,
or a singleton {j} such that a; is a send action and j does not belong to any matching pair
(such an interaction is called unmatched send).

Given e = ay - - - an, a set of interactions v is called a valid communication of e if for every
index j € {1,...,n}, there exists exactly one interaction x € v such that j € x. Le., we need

to ensure that every action in e belongs to exactly one interaction in the valid communication.

We denote by Comm(e) the set of all valid communications associated to e.

» Example 10. Revisiting Example 8, given the execution e = ay...a5 = pqla - qp!b -
qp?b - pale - pq?c, there are two valid communications, v1 = {{1,5},{2,3},{4}} and vp =
{{1},{2,3},{4,5}}, and Comm(e) = {v1,v2}.

For the rest of this section, when we refer to an execution, we are referring to a tuple
(e,v) such that v € Comm(e). We say that two actions a1, as commute if proc(a;) # proc(as)
and they do not form a matching pair.

Given an execution (e, v) such that e = a; ...a, and v € Comm(e), we say that j <., 7’
if (1) j < 5" and (2) aj, a;; do not commute in v. We now graphically characterise causally
equivalent executions, using the notion of a conflict graph. This allows us to establish
equivalences between different executions in which actions can be interchanged.

» Definition 11 (Conflict graph). Given an execution (e,v), the conflict graph cgraph(e,v)
is the directed graph (v,—,,) where for all interactions x1,x2 € V, X1 —>e,v X2 if there is
J1 € x1 and jo € x2 such that j1 <cu jo.
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The conflict graph corresponding to Example 10, cgraph(e, 1), is:

O O—0

Two executions (e,v) and (e,v') are causally equivalent, denoted by (e,v) ~ (e’, /), if their
conflict graphs are isomorphic.

We are now ready to define i-RSC systems, which is the extension of RSC to include inter-
ferences. Intuitively, i-RSC executions can be reordered to mimic rendezvous (or synchronous)
communication. In the case with interference, we enforce that every valid communication is
equivalent to a RSC execution.

» Definition 12 (i-RSC system). An execution (e,v) is i-RSC if all matching pairs in v are
of the form {j,j + 1}. A system S is i-RSC if for all tuples (e,v) such that e € executions(S)
and v € Comm(e), we have cgraph(e,v) = cgraph(e’,v') where (e/,v') is an i-RSC execution.

» Example 13. From Ex. 10, (e, ) is an i-RSC execution, but (e,r;) is neither an i-RSC
execution nor equivalent to one, as message a has to be sent before message b is received by
process p while message b has to be sent before the corresponding message (which is now ¢
due to corruption) is received by process q.

This is the strictest version, however, this can be adapted to include only one commu-
nication by assuming a single instance of v instead of all. We formalise our observation
about non-i-RSC behaviours from Example 13, and show that i-RSC still maintains the good
properties of the conflict graph as in [19].

» Lemma 14. An execution (e, v) is causally equivalent to an i-RSC execution iff the associated
conflict graph cgraph(e,v) is acyclic.

A borderline violation for interferences defined below is a key concept for the decidability
of RSC systems. Intuitively, it provides a “minimal counter-example” for non-RSC behaviour.

» Definition 15 (Borderline violation). An execution (e,v) is a borderline violation if (1)
(e,v) is not causally equivalent to an i-RSC execution, (2) e = €' - c?m for some execution €
such that (a) for all v/ € Comm(e’), (¢/,v') is equivalent to an i-RSC execution and (b) there
exists v1 € Comm(e’) such that (€’,v1) is an i-RSC execution.

» Lemma 16. S is i-RSC if and only if for all e € executions(S) and v € Comm(e), (e,v) is
not a borderline violation.

Following the same approach as in [19], we show that inclusion into the i-RSC class is
decidable. For simplicity, we construct the following sets: Act,, = {c!?m | c!m € Act,c?m’ €
Act} U {c!m | c!m € Act} and Act? = {c?m | c?m € Act}. Note that c!?m could include a
send-receive pair where the message sent is different from the one received. This ensures
inclusion of matching pairs due to corruption. An i-RSC execution can be represented by a
word in Act;,. and a borderline violation by a word in Act),.Act,. We first show that the set
of borderline violations is regular.

» Lemma 17. Let S with product(S) = (Q, X, Ch, Act, d,q,). There is a non-deterministic
finite state automaton Ay, computable in time O(|Ch|3|2|?) such that L(Ay,) = {e €
Act)...Act; | v € Comm(e) such that (e,v) is a borderline violation}.
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Next we show that the subset of executions executions(S) that begin with an i-RSC
prefix and terminate with a reception is regular. The construction of the automaton A,
recognising such a language mimics the i-RSC executions of the original system S, storing
only the information on non-empty buffers, guessing which is the send message that will be
matched by the final reception.

For the following result, we let the size |A| of an automaton A = (Q, 4, q) be |Q| + |0].
Moreover, the size |S| of a system S = (Ap)per = > cp [Ap|-

» Lemma 18. Let S be a FIFO system. There exists a non-deterministic finite state
automaton Aps. over Act,, U Acty such that L(Arsc) = {e-pq?m € Act),,..Acts | e pq?m €
executions(S) and Jv € Comm(e) such that (e,v) is an i-RSC execution}, which can be
constructed in time O(n/P1+2|Ch|? x 21CM) | where n is the size of S.

Using the above lemmas, we derive the following main theorem in this section, which
states that the inclusion of an i-RSC system is decidable; and the complexity is comparable
to that of checking inclusion to RSC [19, Theorem 12].

» Theorem 19. Given a system S of size n, deciding whether it is an i-RSC system can be
done in time O(nlFI+2|Ch|> x 21C0 x |2]?).

4  k-Multiparty Compatibility with interferences

We extend our analyses to counsider k-multiparty compatibility (k-mC) which was introduced
in [37] for a subset of FIFO systems, called communicating session automata (CSA). CSA
strictly include systems corresponding to asynchronous multiparty session types [17].

» Definition 20 (Communicating session automata). A deterministic FIFO automaton which
has no mized states is defined as a session automaton. FIFO systems comprising session
automata are referred to as communicating session automata (CSA).

In this section, we only consider communicating session automata. We begin by recalling the
definition of k-MC which is composed of two properties, k-safety and k-exhaustivity.

» Definition 21 (k-Safety, Definition 4 in [37]). A communicating system S is k-safe if the
following holds for all (q; W) € RSk(S):

(k-ER) Vpq € Ch, if Wpq = m.u then (q; W) LN LN

(k-pC) if qp is receiving, then (q; W) %km for some m € X.
The k-safety condition is composed of two properties, the first being eventual reception
(k-ER) which ensures that every message sent to a channel is eventually received. The other
property is progress (k-PG) where the system is not “stuck” at any receiving state.

A system is k-exhaustive if for all k-reachable configurations, whenever a send action is
enabled, it can be fired within a k-bounded execution.

» Definition 22 (k-Exhaustivity, Definition 8 in [37]). A communicating system S is k-

ezhaustive if for all (¢;W) € RSK(S) and pq € Ch, if g, is a sending state, then for all

(gp, Pa!m, q})) € 0y, there exists (q; W) vy Pq’m;k'

Example 23 shows that the reachability set of k-MC is not necessarily regular, unlike the
binary half-duplex systems [15].

14:9
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Process s Process p Process q Process r
spla sqlb sp?a pqla pq?a sq?b qrla sr?e
—o o —o o —o0 o —o0 o
srlc rp?a qrla rpla

Figure 3 The above system S is k-MC but has a non-regular reachability set.

» Example 23. The system S depicted in Figure 3 is an example of a k-MC system for
which the reachability set is not regular. It consists of four participants, sending messages
amongst themselves. The first participant s can send equal number of a, b, ¢ letters in a
loop to participants p, q, and r respectively. The participants p, q, and r behave similarly, so
let us take the example of p. It consumes one letter from the channel sp, then as a way of
synchronisation sends a message « to q and waits to receive a message « from r. This ensures
that participants p, q, and r consume equal number of letters from their respective channels
with s. Hence, the reachability set for initial configuration (sg, po, go, 7o) is a#b™#c™ which
is context-sensitive, hence non-regular.

We prove that k-MC in the absence of errors, for a large class of systems the k-safety property
subsumes k-exhaustivity.

» Theorem 24. If a directed CSA S is k-safe, then S is k-ezhaustive.

k-MC with interferences. Theorem 24 shows that the k-safety is a too strong condition in
the presence of interferences. For instance, in case of lossiness, progress cannot be guaranteed.
This is because there is always the potential of losing messages and being in a receiving state
forever. We are now ready to define k-weak multiparty compatibility.

» Definition 25 (k-Weak Multiparty Compatibility). A communicating system S is weakly
k-MC, or k-wMc, if it satisfies k-ER and is k-erhaustive.

This notion covers a larger class of systems than k-MC systems, and it is more natural in
the presence of errors. Moreover, we still retain the decidability of k-wMC in the presence of
errors. We briefly discuss weaker refinements to these properties in § 8. We conclude with
the following theorem which states that the k-wMcC property is decidable.

» Theorem 26. Given a system S with lossiness (resp. corruption, resp. out-of-order)
errors, checking the k-wMcC property is decidable and PSPACE-complete.

5 Crash-stop failures

Session types [29,30,47] are a type discipline to ensure communication safety for message
passing systems. Most session types assume a scenario where participants operate reliably,
i.e. communication happens without failures. To model systems closer to the real world,
Barwell et al. [3,6] introduced session types with crash-stop failures. In this section, we
consider the same notion for communicating systems which we define as crash-handling.

5.1 Crash-handling FIFO systems

We extend this framework to FIFO systems. As in [3,6], we declare a (potentially empty)
set of reliable processes, which we denote as R C IP. If a process is assumed reliable, the
other processes can interact with it without needing to handle its crashes. Hence if R = P,



A. Suresh and N. Yoshida

Process ¢ Process s
cslreq  sc’res cs?req  sclres
- o - ~ o BC?save | AC?commit| AC?%
crashc crashc cs?4 O AC?% @
csl4 ? fini.
o o AC?finish

Figure 4 (a) The system S (right) is crash-handling. (b) FIFO automata (right) of the type in
Example 36

there is no additional crash-handling behaviour for the system. In this way, we can model a

mixture of reliable and unreliable processes. For simplicity in the construction, we enforce

an additional constraint that in the crash-handling branches, there is no receive action from
the crashed process.

We use a shorthand for the broadcast of a message m € ¥ by process p € P along all
outgoing channels: (g, broadcast,(m),q’) if ¢ Priim.pr2im.. prolm ¢’ such that n = |Ch, | and
ri # rj for all i # j. We denote by crash-broadcast,(m) the concatenation crash,, - broadcasty(m)
where crash, € Act, is an internal action reserved for when process p crashes.

Let S = (Ap)pep be a FIFO system over X W {4}. Let the set of reliable processes be
R C P. For each p € P:

We divide the state set as follows : Qp = Qp,1 W Qp 2 W Qp 3.

Let Act C (Ch x {I,?7} x (3 W{%4})) W Act, be the set of actions.

We split 6, = dp,1 W d, 2 such that:

5p,1 - QPJ X (Ch X {',7} X E) X (Qp,l U Qp’g), and
Jp2 C Qp X [(Ch x {!,7} x {4}) UAct,] X Q.

We say that a process p has crash-handling behaviour in S if dp 2 is the smallest set of

transitions such that:

1. Crash handling (cH): For all (q,rp?a,q’) € 6,1 such that vy < v = (¢; @) and ¢, = ¢
and r € P\ R, there exists ¢” € (Qp,1 U Qp,2) such that (g,rp?4,q") € dp 2.

2. Crash broadcast (CB): If p ¢ R, then for all ¢ € @1, there exists a crash-broadcast
(g, crash-broadcast, (%), gstop) C 0p,2, for some gstop € Qp2 and all intermediate states
belonging to Qp 3.

3. Crash redundancy (CR): Finally, we have the condition that any dangling crash messages
are cleaned up. For all ¢ € Qp.2, (¢,rp?%,q) € Jp 2.

Condition (CH) enforces that every state in the system which receives from an unreliable

process has a crash-handling branch, so that the receiving process is not deadlocked waiting

for a message from a process that has crashed. Condition (CB) ensures that every unreliable
process can non-deterministically take the internal action crash, when it crashes and broadcast
this information to all the other participants. Condition (CR) ensures that from all states in

Qp,2, any dangling crash messages are cleaned up from an (otherwise empty) channel.

» Definition 27 (Crash-handling systems). We say that a system S is crash-handling if every
process p € P has crash-handling behaviour in S.

Consider the following example, which models a simple send-receive protocol between a
sender and a receiver.

» Example 28. Figure 4(a) shows a crash-handling system. It consists of two processes, a
server (s) and a client (c). We assume that the server is reliable, i.e. does not crash, while
the client is unreliable, i.e could crash. Hence the client can crash in any control state, while

the server is always ready to handle a crash when it is waiting for a message from the client.

14:11
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In this construct, it is still possible to send messages to a crashed process. This is
because from the perspective of the sending process, the crash of the receiving process is not
necessarily known. Therefore, in this model, while processes can continue to send messages
to crashed processes, the crashed processes would not be able to receive any messages.

Note that these properties are local to each individual automaton, hence the verification
of these properties is decidable.

» Lemma 29. [t is decidable to check whether a system is crash-handling.

We see that this behaviour can be appended to any FIFO system, but it does not affect
the underlying verification properties of the automata. We demonstrate with the example
of boundedness (i.e. checking if every execution is k-bounded for some k), but a similar
argument can be used for reachability or deadlock.

» Lemma 30. The boundedness problem is undecidable for crash-handling systems.

5.2 Crash-handling subsystems

Next we investigate inclusion of crash-handling systems in the aforementioned classes.

Crash-handling RSC systems. Checking that the RSC property is decidable for crash-
handling systems amounts to verifying if the proofs hold for communicating automata with
internal actions. Let us first look at an example.

» Example 31. The system in Figure 4 is a crash-handling system that is also RSC. We see
that the behaviour of the system in the absence of crashes is RSC, and in the presence of
crashes, there is no additional non-RSC behaviour. Moreover, even if the req is sent, followed
by the crash broadcast—since the crash message is never received, the behaviour of the
system is still RsC. However, this need not be the case for other examples.

Next we show that the proofs from [19] can be adapted to automata with internal actions.

» Theorem 32. Given a crash-handling system S, it is decidable to check inclusion to the
RSC class.

Crash-handling k-WMC systems. We now show that checking k-wMmc is decidable for
crash-handling systems generated from a collection of local types. The reason for considering
k-wMC instead of k-MC in [37, Definition 9] is that for crash-handling systems generated
from local types, the end states are receiving states (as opposed to final states). This result
is adapted from [37] with the inclusion of internal actions.

» Theorem 33. Given a crash-handling system S generated from a collection of communic-
ating sesston automata, it is decidable to check k-wMcC, and can be done in PSPACE.

6 Session types with crash-stop failures

This section shows that the crash-handling system strictly subsumes the crash-stop systems
in [3,5], preserving the semantics. We recall the crash-stop semantics for local types defined
in [3] where the major additions are (1) a special local type stop to denote crashed processes;
and (2) a crash-handling branch (catch) in one of branches of an external choice.
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The syntax of the local types (S,7,...) are given as:

S, T u= pYmiTi}ier | pH{miT;}ier (external choice, internal choice)
| wptT | t | end | stop (recursion, type variable, end, crash)

An external choice (branching) (resp., an internal choice (selection)), denoted by p?{m;.T; }:cr
(vesp., pY{m;.T;}:cr) indicates that the current role is to receive from (or send to) the process
p. We require pairwise-distinct, non-empty labels and the crash-handling label (catch) not
appear in internal choices; and that singleton crash-handling labels not permitted in external
choices. The type end indicates a successful termination (omitted where unambiguous), and
recursive types are assumed guarded, i.e., ut.t is not allowed, and recursive variables are
unique. A runtime type stop denotes crashes.

We point out here that while this is a bottom-up view of the crash-handling behaviour
introduced in [3], we have taken a purely type-based approach here. For a calculus based
approach, we refer the reader to [4].

We define the LTS over local types and extend the notions to communicating systems.

We use the same labels as the ones for communicating systems.

» Definition 34 (LTS over local types). The relation T % T" for the local type of role p is
defined as:

[LR1] qi{m:.T;}ier _patme Ty, wheret € {,?} and my, # catch.
LR2] T[ut.T/t] % T’ pt. T 5 T

crash-broadcast, (%)

[LR3]  af{m:Ti}ier stop, where T € {!,7}.
qp?%

[LR4]  q?{m;.Ti}ier _— 1, if my = catch.

[LRS] T — WY . T, VqeP\{p} for T € {stop,end}.

Rules [LR1] and [LR2] are standard output/input and recursion rules, respectively; rule [LR3]
accommodates for the crash of a process; rule [LR4] is the main rule for crash-handling where
the reception of crash information leads the process to a crash-handling branch; and rule
[LR5] allows any dangling crash information messages to be read in the sink states.

The LTS over a set of local types is defined as in Definition 2, where a configuration
v= (?, W) of a system is a pair with T = {T,}pep and W = (Wpq)pqe cn With wyq € T*.

Next we algorithmically translate from local types to FIFO automata preserving the trace
semantics. Below we write u?.T for ptq.uto ... ut, T with n > 0.

In order to construct the FIFO automata, we first need to define the set of states.
Intuitively, this is the set of types which result from any continuation of the initial local type.

Below we define a type occurring in another type (based on the definition in [48]).

» Definition 35 (Type occurring in type, [48]). We say a type T' occurs in T (denoted by
T € T) if and only if at least one of the following conditions holds: (1) if T is p?{m;.T;}ier,
there exists i € I such that T' € T;; (2) if T is p{m;.T;}ic1, there exists i € I such that
T € T;; (3) if T is ut.T,, then T € T,,; or (4) T' = T, where = denotes the syntactic
equality.

» Example 36. Let P = {A,B,C} and R = {B,C}. Consider a local type of C: T =
put.B?{sig. A?{commit.t, catch.end}, save.A?{finish.end, catch.end}}.

Then, the set of all 77 € T is {T,B?{sig.A?{commit.t, catch.end}}, A?{commit.t},
B?{save.A?{finish.end, catch.end}}, A?{catch.end}, A?{finish.end}, end, t}.

14:13

FSTTCS 2025



14:14

Unreliability in Practical Subclasses of Communicating Systems

And now, we are ready to define the FIFO automata.

» Definition 37 (From local types to FIFO automata). Let Ty be the local type of participant
p. The automaton corresponding to Ty is A(Ty) = (Q, 4, qo) where:
L Q={T"|T" €T, 7" #t,T" # pt.T} U {qerash} U {send,r | r € P\ {p}}
2. qo = strip(Tp);
3. § is the smallest set of transitions such that V1 € Q:
a. If T =qt{m; T; }icr and k € I, my, # catch, and T € {!,7}

(T, pq t my,strip(Ty)) € 6 if T, # t
(T, pq T my,strip(T”)) € 6 if T, =t with pt. T" € Tp.

b. If T = q?{m;.T; };cr with k € I, my, = catch

(T, qp?%,strip(Ty)) € 0 if Ti # ¢
(T,qp?4,strip(T7)) € 6 if Tp =t with ut. T" € Ty.

c. If T ¢ {stop,end}, then (T, crash-broadcast,(%),stop) C & where
i. (T,crash,qcrash) € 0
ii. ((Icrasm pri!, CIsend,rl) €0
iil. (Gsendyr,» Pris1!%, Gsendyrisr) €0 Vi € {1,...,n — 2}, where n = |Ch,p|
iv. (Gsend,r,_,,crash,stop) € §
d. If T € {stop,end}, then (T,qp?%T) € § for allq € P\ {p}.

where strip(7T') dof strip(T") if T = ut.T’; otherwise strip(T) Lt

» Example 38. The FIFO automata constructed from the type in Example 36 is shown in
Figure 4. We see that for all receiving actions from process A, which is not in the reliable set
of processes, there is a crash-handling branch, where:

To = B?{sig.A?{commit.t, catch.end}, save.A?{finish.end, catch.end}}
T, = A?{commit.t, catch.end} Ty = A?{finish.end, catch.end} T3 = end

We now prove that the automata generated from a local type can be composed into
communicating session automata, and this translation preserves the semantics.

» Lemma 39. Assume T, is a local type. Then A(Ty) is deterministic, directed and has no
mized states. Moreover, T, = A(T,), i.e. Yo, ¢ € executions(T',) < ¢ € executions(A(T})).

By Lemma 39, we derive that the resulting systems belong to the class of crash-handling
systems, and the problem of checking RSC and k-wMCc is decidable for this class.

» Theorem 40. The FIFO system generated from the translation of crash-stop session types
is a crash-handling system. Moreover, it is decidable to check inclusion to the RSC and
k-wMcC classes.

7 Experimental evaluation

We verify protocols in the literature under interferences in order to compare how inclusion to
the RSC and k-wMC classes change; and which of RSC and k-MC is more resilient under failures.
We used the tools, Rsc-checker ReSCu [18] (implemented in OCaml), and k-Mc-checker
kme [37] (implemented in Haskell). The ReSCu tool implements a version of the out-of-order
scheduling with an option, so we use this available option to take our benchmark.
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The kmc tool implements the options to check (1) the k-exhaustivity (k-EXH, Def. 22);
(2) the k-eventual reception (k-ER, Def 21); and (3) the progress (k-PG, Def 21). The k-weak
multiparty compatibility condition (k-wMc, Def 25) no longer checks for k-PG but checks
k-ExH and k-ER. Hence checking (1,2,3) gives us the justification whether k-wMC is more
resilient than k-mMcC. For the out-of-order, we implemented the out-of-order scheduling in
Haskell mirroring the implementation as in ReSCu. To model lossiness, we add reception
self-loops as defined in completely specified protocols [23], and for corruption, we allow the
sending of arbitrary messages; both of these are implemented in Python.

Table 1 shows the evaluation results. From the benchmarks in [18], we selected all the
relevant benchmarks (CSA and peer-to-peer) in order to evaluate them by kmc. Interestingly,
in the case of out-of-order errors, all of the protocols which satisfy k-MC without errors still
satisfy k-MC. However RSC does not satisfy some k-MC protocols. This would imply that
in most real-world examples, the flexibility in behaviour introduced by relaxing the FIFO
condition does not affect the inclusion to k-MC. On the other hand, under lossiness and
corruption, most examples no longer belong to k-MC. More specifically, k-PG fails for most
cases. The k-ER also fails for many cases, especially in the presence of corruption. This
justifies a relevance of our definition of k-wMcC under those two failures.

Table 1 Experimental evaluation of benchmarks in the ReSCu and kmc tool, under the presence of no
errors, out-of-order, lossiness and corruption errors. Note that the systems were checked for £ < 10. TO
denotes timeout after 5 minutes. The *-marked examples originate from the ReSCu tool [18], having been
translated from other papers, as detailed in the original publication.

14:15

Protocol No errors | Out of order Lossiness Corruption
k-MC | RSC | k-MC | RSC |k-exh k-ER k-PG| RSC |k-exh k-ER k-PG| RSC
Alternating Bit [43] yes | yes | yes | yes | yes yes no | yes | yes yes no | yes
Alternating Bit [7] yes | no | yes | yes | yes yes no | yes | yes yes no | yes
Bargain [36] yes | yes | yes | yes | yes yes no | yes | yes no no | yes
Client-Server-Logger [37] yes | no | yes no | yes yes no | yes | yes yes no | yes
Cloud System v4 [27] yes | yes | yes no no no no|yes| no no no | no
Commit protocol [11] yes | yes | yes | yes | yes no no | yes | yes no no | yes
Dev System [42] yes | yes | yes | yes | yes no no | yes | yes no no | yes
Elevator [11] yes | no | yes no | yes yes no| no | no TO no | no
Elevator-dashed [11] yes | no | yes no | no no no| no| no TO no | no
Elevator-directed [11] yes | no | yes no | no no no| no| no TO no | no
Filter Collaboration [50] yes | yes | yes | yes | yes yes no | yes | yes no no | yes
Four Player Game [36] yes | yes | yes no no yes no | yes | no yes no | yes
Health System [37] yes | yes | yes yes | yes no no | yes | yes no no | yes
Logistic [41] yes | yes | yes yes | yes yes no | yes | no no no | yes
Sanitary Agency (mod) [44]| yes | yes | yes | yes | yes no no | yes | yes TO no | yes
TPM Contract [28] yes | yes | vyes no | yes yes no|yes| no no no | no
2-Paxos 2P3A (App F) yes | yes | yes yes | yes yes yes | yes | yess no no | yes
Promela I* [18] yes | no | yes no | yes yes no | yes | yes vyes yes | yes
Web Services™* [18] yes | yes | yes yes | yes yes no | yes | yes no no | yes
Trade System™ [18] yes | yes | yes | yes | yes yes no | yes | yes no no | yes
Online Stock Broker* [18] | no no no no | no no no|yes| no no no | yes
FTP* [18] yes | yes | yes | yes | yes yes no | yes | no no no | yes
Client-server* [18] yes | yes | yes | yes | yes yes no | yes | yes no no | yes
Mars Explosion* [18] yes | yes | vyes yes | yes no no |yes | no no no | yes
Online Computer Sale* [18]| no yes no yes | yes yes no | yes | no no no | yes
e-Museum* [18] yes | yes | yes no | yes no no |yes | yes no no | yes
Vending Machine* [18] yes | yes | vyes yes | yes yes no | yes | yes no no | yes
Bug Report* [18] yes | yes | yes no | yes yes no | yes| no no no | yes
Sanitary Agency™® [18] no | yes | no yes | yes yes no | yes | yes no no | yes
SSH* [18] no | yes no yes | yes yes no | yes | yes yes no | yes
Booking System* [18§] no | yes | no yes | yes yes no | yes | yes no no | yes
Hand-crafted Example* [18]| no yes no yes | yes no no | yes | yes no no | yes

We implement a k-bounded version of the Paxos protocol [35], a consensus algorithm that
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ensures agreement in a distributed system despite failures like lossiness and reordering, using
a process of proposing and accepting values (c.f. Appendix F for the details). This version
limits retry attempts to k. Our implementation (for 2 retries, 2 proposers and 3 acceptors)
shows it is k-MC and RSC both without errors, and k-MC under lossiness. Since Paxos does
not assume corruption, it is unsurprising that it is no longer k-MC under corruption.

8 Conclusion and further related work

In this paper, we derived decidability and complexity results for two subclasses, RSC and
k-McC, under two types of communication failures: interferences and crash-stop failures.
In the absence of errors, RSC systems and k-MC systems are incomparable, even if we
restrict the analyses to 1-MC systems. For example, [37, Example 4] is 1-MC but not RSC.
Conversely, [19, Example 4] is RSC but does not satisfy the progress condition, and hence
is not k-McC for any k € N. Despite these distinctions, both classes aim to generalise the
concept of half-duplex communication to multiparty systems. This serves as our primary
motivation for examining failures in a uniform way across both RSC and k-MC systems.

In the interference model, we introduced i-RSC systems, which relax the matching-pair
conditions in RSC; and k-wMC which omits the progress condition to accommodate a model
with no final states. We proved that the inclusion problem for these relaxed properties remain
decidable within the same complexity class as their error-free counterparts. The evaluation
results in § 7 confirm that relaxed systems are more resilient than the original ones.

As the second failure model, we investigated crash-stop failures. We defined crash-handling
communicating systems which strictly include the class of local types with crash-stop failures.
We also proved that both RSC and k-MC properties are decidable for this class. Note that
multiparty session types with crash-stop failures studied in [6] are limited to synchronous
communications. Meanwhile, the asynchronous setting in [3] restricts expressiveness to a set
of local types projected from global types (which is known to be less expressive than those
not using global types [45]). Therefore, both of these systems are strictly subsumed by our
crash-handling system as proven in Theorem 40.

Integrating the k-McC-checker and the ReSCu tool (with support for crash-stop failures)
into the Scala toolchain of [3] is a promising direction for future work, potentially enabling
the verification of a broader class of programs than those considered in [3,45].

Due to the need to model failures in real-world distributed systems, various failure-handling
systems have been studied in the session types literature, e.g., affine session types [24,31,40],
link-failure [2] and event-driven failures [49]. Interpreting their failures into our framework
would offer a uniform analysis of behavioural typed failure processes.
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A Proofs from §2

We sketch the proofs of reachability under the presence of errors. The proof is well-known
for FIFO systems with lossiness and out-of-order errors, but we for completeness sake, we
include it here.

FIFO systems with lossiness. As shown in [16], for lossy systems, the reachability set is
recognisable, and the reachability problem is decidable.

» Lemma A.1 ( [16]). For FIFO systems with lossiness, the reachability set is recognisable.

Proof. The proof follows from the fact that upward-closed sets are recognisable. Moreover,
the complement of the reachability set of lossy FIFO systems is upwards-closed (under the
subword ordering). Therefore, the reachability set is recognisable (since recognisable sets are
closed under complementation). |

FIFO systems with out-of-order errors. For FIFO systems with out-of-order errors,
reachability is decidable.

» Lemma A.2. For FIFO systems with out-of-order errors, reachability is decidable.

Proof. FIFO systems with out-of-order errors can be seen as FIFO systems with bags, or
multisets. Loosely speaking, this can translate to a vector addition system with states
(VASS), and [14] shows that reachability is Ackermann-complete for VASS. <

FIFO systems with corruption. In case of corruption, the reachability problem is
decidable.

» Lemma A.3. For FIFO systems with corruption errors, the reachability problem is decidable.

Proof. Let S be a FIFO system with corruption. Let us consider a configuration v = (¢, @),
with W = (wpq)pqecn. Without loss of generality, let w,s € X* be the channel contents of
channel rs such that [wys| = n. Since the channel is corrupt, we know that {('q, @) | wp, = wpq
for all pq # rs and w), € &* and |w)| = n} C RS(S), since the existing channel contents can
be corrupted to any other word of the same length. Hence, the reachability set is the union
of all such sets of configurations. In order to find out which lengths of words are reachable
for each configuration, it is sufficient to modify the automata such that there is only one
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letter replacing all the transitions. This ensures that we correctly count the length of all
the words that are reachable. This translates to checking the reachability of a VASS (since
each channel can now be seen as a counter without zero tests), and then, once we know if a
word of length n is reachable, we can be sure that any word of length n is reachable from
the initial state. Hence, the problem reduces to the reachability problem in VASS. <

B Proofs from §3

» Lemma 14. An execution (e,v) is causally equivalent to an i-RSC execution iff the associated
conflict graph cgraph(e,v) is acyclic.

Proof. The left to right implication follows from two observations: first, two causally
equivalent executions have isomorphic conflict graphs. Secondly, the conflict graph of an RSC
execution is acyclic, because for an RSC execution and vertices x1, x2 in the conflict graph,
X1 —re, X2 if thereis j1 € x1 and jo € x2 such that j; <., jo2. Moreover, if there is more than
action in either x; or x2, for i-RSC executions by definition, min(x1) <e,, min(xz2). Therefore,
if there is a cycle in the conflict graph, then this would imply min(x2) <, min(x1), which
would be a contradiction.

For the converse direction, let us assume that a conflict graph associated to e = a1as ... ay,
is acyclic. Let us consider the associated communication set v. Let y; < -+ < x,, be a
topological order on v. Let ¢/ = x1 - -- x» be the corresponding RSC execution, and v/ the
communication set associated to e’ that is RSC.

Let o be the permutation such that €’ = ay(1) - @y (n). Following the proof idea in [19],
we show that e is causally equivalent to €’. Let j,j’ be two indices of e, and let us show that
=7 i o(j) < o(j").

We have that {j, 7'} is a matching pair in e, iff, by construction, {o(j),o(j’)} is a matching
pair in e’. If {4, j'} is not a matching pair of e, then let x and x’ be the interactions containing
j and j' respectively. Since j < j/, there is an arrow between y and X’ in the conflict graph,
and moreover a; and aj; cannot commute. Note that there is an arrow in the conflict graph
of e’ as well. Since the conflict graph is acyclic, we have o(j) < o(j').

<

» Lemma 16. S is i-RSC if and only if for all e € executions(S) and v € Comm(e), (e,v) is
not a borderline violation.

Proof. By definition, if there exists an execution (e, V) in system S such that it is a borderline
violation, then S is not i-RsC. Conversely, if S is not i-RSC, let (e, ) be (one of) the shortest
execution that is not causally equivalent to an i-RSC execution. Then, ¢ = ¢’ - a such that
for all v/ € Comm(e’), we have (¢’,1) is equivalent to an i-RSC execution. Let v be the
communication set of e’ such that it is a subset of the communication set v. Let (¢, ") be
the i-RSC execution that is causally equivalent to (e/,2”). Then, there exists an execution
é such that (é,v) is an execution of S. Moreover, if a is a send action, then (é,v) is i-RSC
which is a contradiction. Therefore, (e, v) is a borderline violation. <

» Lemma 17. Let S with product(S) = (Q, %, Ch, Act, d, q,). There is a non-deterministic
finite state automaton Ay, computable in time O(|Ch*|S|?) such that L(Ap,) = {e €
Act),.Act; | v € Comm(e) such that (e,v) is a borderline violation}.

Proof. Let Apy = (Qbv, v, 0,605 {47 })s With Qpy = {qo,bv, ¢r} U (Ch x Act x {0,1}), and for
all a,a’ € Act,,., for all c € Ch, m,m’ € X:
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1. (90,0, @, Go,pv): this is a loop on the initial state that reads all interactions until the chosen
send message

2. (qo,bw, PA!m, (pq, pa!m, 0)): this is the transition where we non-deterministically select the
send message that is matched to the final reception to be borderline.

3. In case we do not consider out-of-order errors, we add the following step: ((c, a,0),d’, (c, a,0)),
if ch(a’) # c: again loop for every communication but we do not accept any further
communication on the channel c in order to stay borderline. Note that this step is skipped
if we consider the general case with out-of-order errors as we can have matched pairs
between a matched send and receive action.

4. ((c,a,0),d,(c,a’,1)), if proc(a) Nproc(a’) # B: here, the second interaction that will take
part in the conflict graph cycle is guessed. We ensure there is a process in common with
a for there to be an edge between them.

5. ((¢,a,1),d,(c,a, 1)), if ch(a’) # c: once again a loop for every interaction.

6. ((c,a,1),ad,(c,a’,1)), if proc(a) N proc(a’) # @: the next vertex (or vertices) (if any) of
the conflict graph is guessed.

7. ((c,a,1),pq?m/,qy), if proc(a) N proc(pq?m’) # 0: finally, an execution is accepted if it
closes the cycle.

Moreover, each transition of Ay, can be constructed in constant time, so A, can be

constructed in time O(| Ch|?|X|?). <

» Lemma 18. Let S be a FIFO system. There exists a non-deterministic finite state
automaton Aps. over Act,, UActs such that L(A,s.) = {e-pq?m € Act},,.Acts | e pq?m €
executions(S) and Jv € Comm(e) such that (e,v) is an i-RSC execution}, which can be
constructed in time O(nlP172|Ch|? x 21CM) where n is the size of S.

Proof. Let Apse = (Qrscs Orses Go.rscs {¢7}) be the non-deterministic automata, with Q,sc =
Q x ({e} U Ch) x 2¢" U {qs}. We define the transitions as follows:
1. First, while performing the action a € Act,,., (¢,x,S) = (¢, X', S") if
(g,v) = (¢’,v’) in the underlying transition system, for some buffer values v,v’ and
forallce Ch,v. A0 iff c€ S and v. # 0 iff c € 5, and
this condition is added in the absence of out-of-order errors: if a = pq!?m’, then pq ¢ S,
and
either y = ¥/, ora=cmand ¥ =c
2. Second, while performing the action a = pq?m, we have (g, x, S) % qs if x = pg and
(¢,a,q") € ds for some ¢'.

Each transition of A,,. can be constructed in constant time. An upper bound on the number
of transitions can be computed as follows: if (¢, x,S) = (¢, x’,S’) is a transition, then ¢
and ¢’ only differ on at most two machines (the one that executed the send, and the one
that executed the receive), so there are at most n? different possibilities for ¢’ once ¢ and a
are fixed. There are at most two possibilities for x’ once x and a are fixed, and S’ is fully
determined by S and a. Finally, there are n/*l(1 +|Ch|) x 2/¢" x 2 x |Ch| possibilities for a
choice of the pair ((q, x,S),a). <

» Theorem 19. Given a system S of size n, deciding whether it is an i-RSC system can be
done in time O(nlP1+2|Ch|> x 21CM x |2|?).

Proof. The set of borderline violations of a system S can be expressed as L(A,sc) - Actp, N
L(Apy). Therefore, checking for inclusion in i-RSC reduces to checking the emptiness of this
intersection, which can be done in time O(n). |
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Proof. Let A = (Q.4,04,90,4,{qr}) be the non-deterministic automata, with Q4 = @ x
({e} U Ch) x 29" U {qs} over alphabet Ls U {#} U X such that L(A) = P(S). We define an
automaton Ap over the alphabet Act of communications such that for all i-RSC executions e,
e € L(Ap) iff there is v € P(S) such that o = 7. Let us define Ap = (Qp,dp, Qo.p, Fp)
as follows:
Qp =0Qs X Qs x QlAChl X Q‘AChI, such that the components indicate the current control-
state, the assumed final state, the current position of the last unreceived letter on each
channel, and a copy of the initial positions on each channel, respectively.
We say that state (¢s,qr,qa,qcn) € Qo,p if: ¢s = Y0, g4 = qcn, and after reading the
contents of qg, the state is reachable from ¢; for all buffers. We similarly define F4.
We say (¢s,qr,q4,qcn) — (4, @, @, don) € 0p if (1) qr = dp; (2) gon = dops (3)
4s —s ¢s; and either (4.1) if ¢ = pq!?a then g4 = ¢y, else (4.2) if ¢ = pgla then
dA,pq 5 q;l,pq. Hence, we only progress the automaton when there is an addition to the
channel contents.
Now that the automaton is defined, we can say that the intersection RS(S) N P(S) = 0 iff
L(AP) n L(-Arsc) =0. <

C Proofs from §4

» Theorem 24. If a directed CSA S is k-safe, then S is k-ezhaustive.

Proof. We prove this by contradiction. Let us assume that S is not k-exhaustive. In other
words, there exists s € RS,(S) and pq € Ch, such that g, is a sending state and there is no

!
execution of the kind s =5, 2" ,. In other words, the channel pg has k messages already,
ie. |wpq| = k. However, since s € RS,(S), and S is k-safe, and more specifically satisfies

eventual reception, there exists a configuration ¢t € RSy(S) such that s kam t, such
that wpq = m’ - u. Moreover, since the execution s < t is k-bounded, we can be sure that
there have been no new sends along the channel pq. Furthermore, since S is directed and has
no mixed states, in configuration ¢, p is still at state q,. Therefore, we now have ¢ Mk,
which contradicts our initial assumption. |

» Theorem 26. Given a system S with lossiness (resp. corruption, resp. out-of-order)
errors, checking the k-wMcC property is decidable and PSPACE-complete.

Proof. To check whether S is not k-exhaustive, i.e., for each sending state g, and send action
from ¢, we check whether there is a reachable configuration from which this send action
cannot be fired. Hence, we need to search RSy (S), which has an exponential number of
configurations (wrt. k). Note that due to interferences, each of these configurations can now
have modified channel contents. We need to store at most |[P|"|Ch||2|* configurations, where
n is the maximum number of local states of a FIFO automata, following ideas from [37]
and [9]. Hence, the problem can be decided in polynomial space when k is given in unary.
Next, to show that k-WER is decidable, we check for every such reachable configuration,
that there exists a receive action from the same channel (note that we do not need to ensure
it is the same message).
<

D Proofs from §5

» Lemma 29. [t is decidable to check whether a system is crash-handling.
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Proof. To check whether a system S is crash-handling, we need to check the two properties:

1. Checking if (cH) is satisfied amounts to checking if for all receiving transitions 7 € J, 1
such that the sending process is in P\ R, there exists a transition 7/ € d, 2 that handles
the crash.

2. To check (CB), we need to check every state in a process in P\ R and ensure it can send
crash messages when it crashes.

Both of these are structural checks made on the graph of the automata, hence, checking this

is decidable. |

» Lemma 30. The boundedness problem is undecidable for crash-handling systems.

Proof. Since every FIFO system is a crash-handling process under the condition that P = R,
this lemma is trivially true. Moreover, every FIFO system S with R C IP can be translated
to a crash-handling system S’ such that S is k-bounded iff S’ is at most k + 1-bounded.
This can be done by adding a new sink state gsnk such that for all receiving transitions
(g,c?a,q') € §p1, we add to J, 2 a transition (q,c?4, ¢sink). Hence, (CH) will be handled. For
enforcing (CB), we add to each state g of an unreliable process p the following transition
(g, crash-broadcast, (%), gsink). Hence, both conditions are satisfied, and these additional
transitions do not add any unboundedness to the channels (and at most one message extra
to each channel). Moreover, if the original system is unbounded, then the same execution
would be enabled in S&’. Hence, S is k-bounded iff S’ is at most k + 1-bounded. <

» Theorem 32. Given a crash-handling system S, it is decidable to check inclusion to the
RSC class.

Proof. This amounts to checking the RSC property in automata with internal actions.
Intuitively, this amounts to “skipping" the internal actions in the respective NFAs. In order
to prove this, we let Act,, = {c!?m | clm € Act,c?m € Act} U {clm | clm € Act} U Act,.
Then we follow the construction as before. Note that since internal actions do not have a
channel associated to them, we do not need to make any further changes. In the conflict
graph, they are considered as nodes with only process edges between them, hence, do not
form cycles and can be ignored. |

» Theorem 33. Given a crash-handling system S generated from a collection of communic-
ating sesston automata, it is decidable to check k-wMcC, and can be done in PSPACE.

Proof. First, we observe that for any k € N, RS,(S) and —, are finite. Moreover, there are
at most n - |P| control states in the system, where n = maz({|Q,| | p € P}.

k-exhaustivity: We check whether S is not k-exhaustive, i.e., for each sending state gp
and send action from g, , we check whether there is a reachable configuration from which
this send action cannot be fired. The presence of internal actions and the absence of final
states does not alter this proof.

eventual reception: For each receiving state g,, we check whether there is a reachable
configuration from which one receive action of p is enabled, followed by a send action that
matches another receive. We proceed as in the case for k-exhaustivity with additional space
to remember whether we are looking for the receiving state or for a matching send action.
Note that the presence of the internal actions does not affect this property either. This is
because they do not modify the channel bounds (and hence, are not bounded by k), and do
not increase the size of RSy(S).

Therefore, the proofs can directly follow from [37, Theorem 2]. <
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E Proofs from §6

Before we construct the resulting FIFO automata, we first need to show that the set of states
is finite.

» Lemma E.1. Given a local type T, the set {T' | T' € T} is finite.

Proof. Let us consider each of the four conditions to build the set {77 | 7" € T'} from 7. In
cases (1), (2) and (4), we see that 7" is a strict prefix of T'. Moreover, in case (3), we do not
add any element to the set. Therefore, since the length of T is finite, the set {T" | T € T'} is
finite. <

Hence, we can conclude that the automata constructed from 7' has finitely many states.

» Lemma 39. Assume T, is a local type. Then A(Tp) is deterministic, directed and has no
mized states. Moreover, T, = A(T}), i.e. Vo, ¢ € executions(T'p) < ¢ € executions(A(T))).

Proof. For the determinism, we note that all m; in q!{m;.T;}ic; and q?{m;.T;};c; are
distinct. Apart from this, there is only a unique local action that can be taken from a state
in case of crash. Therefore, the automaton is deterministic. Directedness is by the syntax of
branching and selection types, and the fact that the internal action crash leads to a state
without interacting with any other participant. The message broadcast, although not explicit,
can be viewed as a sequence of send transitions, thereby making the system directed. Finally,
for the absence of mixed states, we can check a state is either sending or receiving state
as one state represents either branching and selection type, along with stop, end which are
receiving states, and all the intermediate states (between a crash until the stop state) are
sending states.

We now show that the translation preserves the semantics.

We show that 7' = T" if strip(T) = strip(7”). Base case: Considering a transition of size
0, it trivially holds as ¢g = strip(7p). Let us assume it holds for a transition of size k. Now,
let us consider a single transition from 7' % T". If the transition a belongs to [LR1] or [LR2]
(resp. [LR5]) that leads to 7", then there exists a transition in 3a (resp. 3d) that leads to
strip(7”). Similarly, the correspondence holds for transitions from [LR4] to 3b. Note that
rule [LR2] is implicitly applied because of the strip() function. Finally, [LR3] corresponds to
3c.

The reverse direction follows as above. The only change is for the crash-handling behaviour.

Here, we modify the condition as follows: if strip(T) = ¢, then there exists T~ T" such

that there is a unique, deterministic sequence of transitions 7"’ such that ¢ - strip(7”). For
all cases except 3c, the proof above can be adapted (with ¢ = T" and 7”7 = ¢). For 3c. we
see that for every sequence of transitions taken, there is a unique continuation that leads to
stop, and the concatenation of 7.7/ = 7 and leads to stop.

<

» Theorem 40. The FIFO system generated from the translation of crash-stop session types
is a crash-handling system. Moreover, it is decidable to check inclusion to the RSC and
k-wMcC classes.

Proof. This can be seen by assuming Qp1 = {1" | 7" € Ty, T" # t, T’ # put. T} \ {end, stop}.

Moreover, Qp 2 = {stop,end} and Qp 3 = {qcrash } U{qsend,r | r € P\ {p}}. Moreover, rules in 3a
correspond to dp1 and 3b (CH), 3¢ (CB), 3d (CR) constitute d, 2. With this correspondence,
we see that all the conditions are satisfied, hence, it is a crash-handling system.
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?reject(ng, nj) @

broadcasta(chosen(n;, v;))

?raccept(n;, v;)

roadcast, (prep(n;)) ~ ?kprom(n;, v;) /..Qroadcasta(accreq(m,vl .

75 reject(ng, n;)

! reject(n;, n;)

Iprom(n;, v;)

?prep(z;)

laccept(n;, v;) ! reject(ni, nj)

Figure 5 FIFO automata of the proposer and acceptor respectively in Paxos (broadcasta(m)
refers to broadcasting message m to all acceptors, 7xm refers to receiving at least k messages m).

From Lemmas 39 and the above result, we see that the FIFO system generated from
the translation of crash-stop local types is a crash-handling system and a collection of
communicating session automata. Moreover, from Theorems 32 and 33, it is decidable to
check inclusion into the RSC and k-wMcC classes. Therefore, we can check the inclusion for
collection of local types generated from crash-stop session types. <

F Paxos Protocol

In this section, we implement a basic version of the single-decree Paxos protocol, which was
originally described in [35]. The Paxos algorithm has been used to implement a fault-tolerant
distributed system, which is essentially a consensus algorithm aimed to ensure that network
agents can agree on a single proposed value. We model this protocol using FIFO systems
with faulty channels, and go on to explore if it belongs to any of the above-mentioned classes
of communicating systems.

The protocol.

We assume a subset of processes to be proposers, i.e. processes that can propose values. The

consensus algorithm ensures that exactly one value among the proposed values is chosen. A

correct implementation of the protocol must ensure that:

= Only a value that has been proposed will be chosen.

= Only one single value is chosen by the network.

= A process never knows that a value has been chosen unless the value has actually been
chosen.

The Paxos setting assumes the customary asynchronous, non-Byzantine model, in which:
= Agents operate at arbitrary speed, may fail by crashing, and may restart. However, it is
assumed that agents maintain persistent storage that survives crashes.
= Messages can take arbitrarily long to be delivered, can be duplicated, and can be lost or
delivered out of order, but they are not corrupted.
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Paxos agents implement three roles: i) a proposer agent proposes values towards the
network for reaching consensus; ii) an acceptor accepts a value from those proposed, whereas
a majority of acceptors accepting the same value implies consensus and signifies protocol
termination; and iii) a learner discovers the chosen consensus value.

The implementation of the protocol may proceed over several rounds. A successful round
has two phases: Prepare and Accept. The protocol ensures that in the case where a consensus
value v has already been chosen among the majority of the network agents, broadcasting
a new proposal request with a higher proposal number will result in choosing the already
chosen consensus value v. Following this fact, we assume for simplicity that a learner has
the same implementation as a proposer.

Requirement 1: An acceptor must accept the first proposal that it receives, i.e. for the
acceptor, there must be a path from the initial state, which accepts the first proposal it
gets.

Requirement 2: If multiple proposals are chosen, they all have the same proposal value.

We model a bounded-version of Paxos with a FIFO system which can have any of
the above-mentioned errors except corruption. The automata in Fig 5 show an example
implementation of a proposer and an acceptor, with a majority of k agents needed for
consensus. The action !!msg refers to broadcasting the message msg across all channels, and
7, msg refers to receiving k msg messages. Both these actions can be unrolled and expressed
as a combination of simple actions. Moreover, we assume that for each value of n; there is a
copy of the same set of transitions. And since we cannot compare values in finite automata,
we sequentially order the automata with increasing values of n;. Note that this model is a
CSA, and hence, we can test the kmc tool and the ReSCu tool on an implementation. We
verify that a 2-bounded Paxos with 2 proposers and 3 acceptors (2-Paxos2P3A) is k-MC and
RSC in the presence of lossiness.
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