
ar
X

iv
:1

90
1.

09
60

6v
1

 [
cs

.P
L

]
 2

8
Ja

n
20

19

Verifying Asynchronous Interactions via

Communicating Session Automata

Julien Lange1 and Nobuko Yoshida2

1 University of Kent, Canterbury, United Kingdom
2 Imperial College London, London, United Kingdom

Abstract. The relationship between communicating automata and ses-
sion types is the cornerstone of many diverse theories and tools, including
type checking, code generation, and runtime verification. A serious lim-
itation of session types is that, while endpoint programs interact asyn-
chronously, the underlying property which guarantees safety of session
types is too synchronous: it requires a one-to-one synchronisation be-
tween send and receive actions. This paper proposes a sound procedure
to verify properties of communicating session automata (csa), i.e., com-
municating automata that correspond to multiparty session types. We
introduce a new asynchronous compatibility property for csa, called
k-multiparty compatibility (k-mc), which is a strict superset of the syn-
chronous multiparty compatibility proposed in the literature. It is de-
composed into two bounded properties: (i) a condition called k-safety
which guarantees that, within the bound, all sent messages can be re-
ceived and each automaton can make a move; and (ii) a condition called
k-exhaustivity which guarantees that all k-reachable send actions can
be fired within the bound. We show that k-exhaustive systems soundly
and completely characterise systems where each automaton behaves uni-
formly for any bound greater or equal to k. We show that checking k-mc

is pspace-complete, but can be done efficiently over large systems by
using partial order reduction techniques. We demonstrate that several
examples from the literature are k-mc, but not synchronous compatible.

Keywords: verification · message passing concurrency · asynchrony ·
communicating automata · session types

1 Introduction

Models of asynchronous message passing programs. Asynchronous message pass-
ing has become one of the key features of several modern concurrent program-
ming languages. For instance, Go and Rust provide a message passing mecha-
nism through bounded channels, while Scala/Akka and Erlang adopt the actor
model where processes communicate via unbounded mailboxes. Ensuring the
correctness of programs written in these languages is notoriously hard. Due to
the very high (possibly infinite) number of interleavings between asynchronous
interactions among parallel processes, verifying properties over all possible com-
putations is infeasible. To overcome this problem, several recent approaches use

http://arxiv.org/abs/1901.09606v1

2 Julien Lange and Nobuko Yoshida

state machines or process calculi as abstract models of the behaviours of the
asynchronous communications in concurrent programs. Starting from the source
code of a program, a model is extracted, either manually or automatically, and
its properties are verified using, e.g., model checking tools. This model-based ap-
proach has been successfully applied to verify, e.g., Cloud Haskell [4], Erlang [28],
Go [49, 50, 62], and P [15].

As one of the most prominent abstract models for asynchronous interactions,
this paper studies communicating automata [16] which express point-to-point
communications through unbounded first-in-first-out channels. Like many other
expressive communication models, most properties are generally undecidable for
this model [16,31]. To circumvent the problem, many restrictions and variations
of communicating automata have been introduced. Notably, it has been shown
that some properties are decidable for two-party half-duplex systems [17], for
universally and existentially bounded systems [32,33,47], and for communicating
automata with lossy [2, 18] and un-ordered [19] channels, see [57] for a survey.

Communicating automata and session types. This paper focuses on a class of
communicating automata, called communicating session automata, which in-
cludes automata corresponding to asynchronous multiparty session types [40].
Session types originated as a typing discipline for the π-calculus [39, 78], where
a session type dictates the behaviour of a process wrt. communications. Session
types and related theories have been applied to the verification and specifica-
tion of concurrent and distributed systems through their integration in several
mainstream programming languages, e.g., Haskell [55, 66], Erlang [60], F7 [59],
Go [49, 50, 62], Java [42, 43, 46, 77], OCaml [67], C [63], Python [22, 58, 61], and
Scala [74, 75]. Communicating automata and asynchronous multiparty session
types [40] are closely related: the latter can be seen as a syntactical representa-
tion of the former [23] where a sending state corresponds to an internal choice
(‘) and a receiving state to an external choice (N). This correspondence between
communicating automata and multiparty session types has become the founda-
tion of many tools centred on session types, e.g., for generating communication
API from multiparty session (global) types [42, 43, 59, 74], for detecting dead-
locks in message-passing programs [62, 79], and for monitoring session-enabled
programs [7, 22, 58, 60, 61].

Asynchronous multiparty session types are too synchronous. A key ingredient of
the above tools based on communicating automata is a set of sound procedures,
called multiparty compatibility in [8, 24, 51], which guarantee that communicat-
ing automata representing session types interact correctly, which in turn is used
to identify correct protocols or detect errors in endpoint programs. These pro-
cedures ensure two basic requirements of interest for multiparty session type
frameworks: (i) every message that is sent can be eventually received and (ii)
each automaton can always eventually make a move. However, all of these pro-
cedures suffer from a severe limitation: they require that for each execution of
the system, there must be an equivalent synchronous execution. Hereafter, we

Verifying Asynchronous Interactions via Communicating Session Automata 3

c :

cs!req

cs!datasc?ko

sc?err sc?ok

s :
cs?req

sc!ko

cs?data

sc!ok

cs?data

sl!log l : sl?log

Fig. 1. Client-Server-Logger example.

refer to these procedures as synchronous multiparty compatibility relations. We
explain their limitations with the following example.

Example 1. The system in Figure 1 (top) is not synchronous multiparty com-
patible for any of the definitions given in [8, 24, 51]. The figure depicts a system
consisting of a client (c), a server (s), and a logger (l), which communicate
via unbounded fifo channels. A transition sr!a denotes that a sender puts
(asynchronously) a message a on channel sr; and a transition sr?a denotes the
consumption of a from channel sr by its receiver. In Figure 1 the client sends
a request to the server, followed by some data. It then waits for the server to
reply with an ok message (in which case the client terminates) or a ko message
(in which case the client restarts). The server sends a log message to the logger
only after it has sent an ok message to the client. We observe that this system
cannot be executed synchronously (i.e., with the restriction that a send action
can only be fired when its corresponding receive is ready to be fired). Indeed, for
the system to progress further, the client must send some data while the server
sends either ok or ko. In fact, due to the asynchronous nature of the commu-
nication, this example is rejected by all definitions of synchronous multiparty
compatibility as defined in previous works, even though it is safe; hence tools
like, e.g., [62, 79] cannot identify the corresponding endpoint programs as safe.

Contributions

In this work, we focus on communicating automata which are deterministic and
whose every state is either sending (internal choice), receiving (external choice),
or final. We refer to this class as communicating session automata (csa), as they
cover the most common form of asynchronous multiparty session types [20] (see
Remark 3), and have been used as a basis to study properties and extensions of
session types [8, 9, 24, 42, 43, 53, 54, 58, 60, 61]. Our key discovery is that systems
consisting of csa which preserve the intent of internal and external choices from
session types have interesting and tractable properties: in these csa, whenever
an automaton is in a sending state, it can fire any transition, no matter whether
channels are bounded; when it is in a receiving state then at most one action must
be enabled. For these systems, we can not only introduce a new asynchronous
multiparty compatibility property which overcomes a fundamental limitation
of previous works on session types, but also formally relate session types with
several bounded verification approaches for asynchronous programs from the
broader area of message passing concurrency [15, 32, 33, 47].

4 Julien Lange and Nobuko Yoshida

Asynchronous k-multiparty compatibility. We propose a new definition of multi-
party compatibility for csa, called k-multiparty compatibility (or k-mc), which
generalises synchronous multiparty compatibility definitions, where k P Ną0 is
a bound on the number of pending messages in each channel. The definition
of k-mc relies on (i) k-exhaustivity which guarantees that all k-reachable send
actions can be fired within the bound, and (ii) k-safety which requires that,
within the bound k, all sent messages can be received and each automaton can
always eventually progress. For example, the system in Figure 1 is k-multiparty
compatible for any k P Ną0, hence it does not lead to communication errors, see
Theorem 1. We show that k-mc systems include systems that are intrinsically
asynchronous and that they enjoy the same safety properties as the ones ensured
in the session types literature. We show that, given k, deciding k-mc is pspace-
complete (Theorem 2) and that k-mc is preserved under partial order reduction
(Theorem 6), and thus can be checked effectively. We test several examples from
the literature and show that they conform to k-mc.

Relationship with other classes of communicating automata. The k-exhaustivity
property plays a central role in enabling us to characterise the relationship be-
tween several bounded verification approaches [15,32,33,47]. If a system of csa

validates k-exhaustivity, each automaton locally behaves equivalently under any
bound greater then or equal to k, a property that we call local bound-agnosticity.
We give a sound and complete characterisation of k-exhaustivity for csa in terms
of local bound-agnosticity, see Theorem 3. We show that k-exhaustive csa are a
strict subset of existentially bounded communicating session automata [32,33,47]
(an infinite-state sub-class of communicating automata for which some reacha-
bility problems are decidable). We show that the two classes coincide for systems
in which every message that is sent is eventually received, see Theorem 7. Check-
ing whether a system is k-existentially bounded is generally undecidable, even
for a given k. Therefore, k-exhaustivity gives us an effective sufficient condition
for existential boundedness. The relationship between k-exhaustivity and exis-
tential boundedness is used to compare k-exhaustivity with k-synchronisability,
a class of communicating automata recently introduced in [15], which we show
to be strictly included in existentially bounded systems, see Theorem 10.

Synopsis The rest of the paper is structured as follows. In § 2, we give the
necessary background on communicating automata and their properties, and in-
troduce the notions of output/input bound independence which guarantee that
internal/external choices are preserved in bounded semantics. In § 3, we intro-
duce the definition of k-multiparty compatibility (k-mc) and show that k-mc

systems are safe for systems which validate the bound independence properties.
In § 4, we show that k-mc can be checked effectively using partial order reduction
techniques. In § 5, we relate formally existential boundedness, synchronisability,
and k-exhaustivity. In § 6 we present an implementation and an experimental
evaluation of our theory. We discuss related works in § 7 and conclude in § 8.
The appendix contains auxiliary definitions, proofs and additional examples. The
implementation of our theory and benchmark data are available online [45].

Verifying Asynchronous Interactions via Communicating Session Automata 5

2 Communicating session automata

This section introduces notations and definitions of communicating automata
(following [17,51]), as well as the notion of output (resp. input) bound indepen-
dence which enforces the intent of internal (resp. external) choice in csa.

Fix a finite set P of participants (ranged over by p, q, r, s, etc.) and a
finite alphabet Σ. The set of channels is C

def
“ tpq | p, q P P and p ‰ qu,

A
def
“ C ˆt!, ?uˆΣ is the set of actions (ranged over by ℓ), Σ˚ (resp. A˚) is the

set of finite words on Σ (resp. A). Let w range over Σ˚, and φ, ψ range over A˚.
Also, ǫ (R Σ YA) is the empty word, |w| denotes the length of w, and w ¨w1 is
the concatenation of w and w1 (these notations are overloaded for words in A˚).

Definition 1 (Communicating automaton). A communicating automaton
is a finite transition system given by a triple M “ pQ, q0, δq where Q is a finite
set of states, q0 P Q is the initial state, and δ Ď QˆAˆQ is a set of transitions.

The transitions of a communicating automaton are labelled by actions in A of
the form sr!a, representing the emission of message a from participant s to r, or
sr?a representing the reception of a by r. Define subj ppq!aq “ subj pqp?aq “ p,
obj ppq!aq “ obj pqp?aq “ q, and chanppq!aq “ chanppq?aq “ pq. The projection
of ℓ onto p is defined as πppℓq “ ℓ if subj pℓq “ p and πppℓq “ ǫ otherwise. Let :

range over t!, ?u, we define: π:
pqppq:aq “ a and π:1

pqpsr:aq “ ǫ if either pq ‰ sr

or : ‰ :1. We extend these definitions to sequences of actions in the natural way.
A state q P Q with no outgoing transition is final ; q is a sending (resp. re-

ceiving) state if it is not final and all its outgoing transitions are labelled with
send (resp. receive) actions, and q is a mixed state otherwise. Automaton M “
pQ, q0, δq is deterministic if for all pq, ℓ, q1q, pq, ℓ1, q2q P δ : ℓ “ ℓ1 ùñ q1 “ q2.
Automaton M “ pQ, q0, δq is send (resp. receive) directed if for all sending (resp.
receiving) state q P Q and all pq, ℓ, q1q, pq, ℓ1, q2q P δ : obj pℓq “ obj pℓ1q. M is di-
rected if it is send and receive directed.

Remark 1. In this paper, we consider only deterministic communicating au-
tomata without mixed states, and called them Communicating Session Automata
(csa). We discuss possible extensions of our results beyond this class in Section 8.

Definition 2 (System). Given a communicating automaton Mp “ pQp, q0p , δpq
for each p P P, the tuple S “ pMpqpPP is a system. A configuration of S is a
pair s “ pq;wq where q “ pqpqpPP with qp P Qp and where w “ pwpqqpqPC

with wpq P Σ
˚; component q is the control state and qp P Qp is the local state of

automaton Mp. The initial configuration of S is s0 “ pq0; ǫq where q0 “ pq0pqpPP

and we write ǫ for the |C|-tuple pǫ, . . . , ǫq.

Hereafter, we fix a communicating session automaton Mp “ pQp, q0p , δpq for
each participant p P P and let S “ pMpqpPP be the corresponding system.
For each p P P , we assume that for all pq, ℓ, q1q P δp : subj pℓq “ p. Given a
configuration s we assume that its components are named consistently, e.g., for
s1 “ pq1;w1q, we implicitly assume that q1 “ pq1

pqpPP and w1 “ pw1
pqqpqPC . We

take the convention that s0 denotes the initial configuration of S.

6 Julien Lange and Nobuko Yoshida

Definition 3 (Reachable configuration). A configuration s1 “ pq1;w1q is
reachable from another configuration s “ pq;wq by firing transition ℓ, written

s
ℓ
ÝÑ s1 (or s ÝÑ s1 if the label is not relevant), if there are s, r P P and a P Σ

such that either:

1. ℓ “ sr!a and pqs, ℓ, qs
1q P δs,

(a) q1
p “ qp for all p ‰ s, and

(b) w1
sr “ wsr ¨a and w1

pq “ wpq for all pq ‰ sr; or

2. ℓ “ sr?a and pqr, ℓ, qr
1q P δr,

(a) q1
p “ qp for all p ‰ r,

(b) wsr “ a ¨w1
sr, and w1

pq “ wpq for all pq ‰ sr.

Condition (1b) puts a on channel sr, while (2b) gets a from channel sr.

Remark 2. Hereafter, we assume that any bound k is finite and k P Ną0.

A configuration pq;wq is k-bounded if @pq P C : |wpq| ď k. We write

s1
ℓ1¨¨¨ℓmÝÝÝÝÑ sm`1 when s1

ℓ1ÝÑ s2 ¨ ¨ ¨ sm
ℓmÝÝÑ sm`1, for some s2, . . . , sm (with

m ě 0); and say that the execution ℓ1 ¨ ¨ ¨ ℓm is k-bounded from s1 if @1 ď i ď
m`1 : si is k-bounded. We write ÝÑ˚ for the reflexive and transitive closure
of ÝÑ. Given φ P A˚, we write p R φ iff φ “ φ0 ¨ ℓ ¨φ1 ùñ subj pℓq ‰ p. We

write s
φ
ÝÑk s

1 if s1 is reachable with a k-bounded execution φ from s. The set of
reachable configurations of S is RS pSq “ ts | s0 ÝÑ

˚su. The k-reachability set of
S is the largest subset RSkpSq of RSpSq within which each configuration s can
be reached by a k-bounded execution from s0.

The definition of safety below streamlines notions of safety from previous
works [8, 17, 24, 51] (guaranteeing the absence of deadlocks, orphan messages,
and unspecified receptions).

Definition 4 (k-Safety). S is k-safe if the conditions below hold for all s “
pq;wq P RSkpSq:

1. For all pq P C, if wpq “ a ¨ w1, then s ÝÑk
˚ pq?a
ÝÝÝÑk.

2. For all p P P, if qp is a receiving state, then s ÝÑk
˚ qp?a
ÝÝÝÑk for some q P P

and a P Σ.

We say that S is safe if it validates the unbounded version of k-safety (8-safe).

Property (1), called eventual reception (er), requires that any message that
is sent can always eventually be received (i.e., if a is the head of a queue then
there must be an execution that consumes a), and Property (2), called progress,
requires that any automaton in a receiving state can eventually make a move
(i.e., it can always eventually receive an expected message).

We say that a configuration s is stable iff s “ pq; ǫq, i.e., all its queues
are empty. Next, we define the stable property for systems of communicating
automata, following the definition from [24].

Verifying Asynchronous Interactions via Communicating Session Automata 7

Definition 5 (Stable). S has the stable property (sp) if @s P RSpSq : Dpq; ǫq P
RSpSq : s ÝÑ˚pq; ǫq.

A system has the stable property if it is possible to reach a stable config-
uration from any reachable configuration. This property is called deadlock-free
in [33]. The stable property implies the eventual reception property, but not
safety (e.g., an automaton may be waiting for an input in a stable configuration,
see Example 2), and safety does not imply the stable property, see Example 4.

Example 2. The following system has the stable property, but it is not safe.

s : pq!bpq!a q : pq?apq?bqr!c r : qr?c

Next, we define two properties related to bound independence. They specify
classes of csa whose branching behaviours are not affected by channel bounds.

Definition 6 (k-obi). S is k-output bound independent (k-obi), if for all

s “ pq;wq P RSkpSq and p P P, if s
pq!a
ÝÝÑk, then @pqp, pr!b, q

1
pq P δp : s

pr!b
ÝÝÑk.

Definition 7 (k-ibi). S is k-input bound independent (k-ibi), if for all s “

pq;wq P RSkpSq and p P P, if s
qp?a
ÝÝÝÑk, then @ℓ P A : s

ℓ
ÝÑk ^ subj pℓq “ p ùñ

ℓ “ qp?a.

If S is k-obi, then any automaton that reaches a sending state is able to fire
any of its available transitions, i.e., sending states model internal choices which
are not constrained by bounds greater than or equal to k. We note that the
unbounded version of k-obi (k “ 8) is trivially satisfied for any system due to
asynchrony. If S is k-ibi, then any automaton that reaches a receiving state is
able to fire at most one transition, i.e., receiving states model external choices
where the behaviour of the receiving automaton is controlled by its environment.
We write ibi for the unbounded version of k-ibi (k “ 8).

Checking the ibi property is generally undecidable. However, systems con-
sisting of (send and receive) directed automata are trivially k-ibi and k-obi for
all k, this subclass of csa was referred to as basic in [24]. We introduce larger
decidable approximations of ibi in Definitions 11 and 12.

Proposition 1. (1) If S is send directed, then S is k-obi for all k P Ną0. (2) If
S is receive directed, then S is ibi (and k-ibi for all k P Ną0).

Remark 3. csa validating k-obi and ibi strictly include the most common forms
of asynchronous multiparty session types, e.g., the directed csa of [24], and sys-
tems obtained by projecting Scribble specifications (global types) which need to
be receive directed (this is called “consistent external choice subjects” in [43]) and
which validate 1-obi by construction since they are projections of synchronous
specifications where choices must be located at a unique sender.

The equivalence relation defined below relates executions which only differ
by re-ordering of independent actions, it is used in several results below.

Definition 8 (Projected equivalence). Let φ, ψ P A˚, we define: φ—ψ if
@p P P : πppφq “ πppψq.

8 Julien Lange and Nobuko Yoshida

p :

pq!a1

pq!a2

pr!c

qp?b

pq!y

pr!c

qp?b

pq!a1

pq!a2

qp?x

q :

pq?a1

pq?a2

rq?d

qp!b

pq?y

rq?d

qp!b

pq?a1

pq?a2

qp!x

r : pr?c

rq!d

Mp Mq Mr

Fig. 2. Example of a non-ibi and non-safe system.

3 Bounded compatibility for csa

In this section, we introduce k-multiparty compatibility (k-mc) and study its
properties wrt. safety of communicating session automata (csa) which are k-obi

and ibi. Then, we soundly and completely characterise k-exhaustivity in terms
of local bound-agnosticity, a property which guarantees that communicating
automata behave equivalently under any bound greater than or equal to k.

3.1 Multiparty compatibility

The definition of k-mc is crucially divided in two parts: (i) k-exhaustivity guar-
antees that the set of k-reachable configurations contains enough information for
making a sound decision wrt. safety of the system under consideration; and (ii)
k-safety (Definition 4) guarantees that a subset of all possible executions is free
of any communication errors. Next, we define k-exhaustivity, then k-multiparty
compatibility. Intuitively, a system is k-exhaustive if for all k-reachable con-
figurations, whenever a send action is enabled, then it can be fired within a
k-bounded execution.

Definition 9 (k-Exhaustivity). S is k-exhaustive if for all s “ pq;wq P
RSkpSq and p P P, if qp is a sending state, then @pqp, ℓ, q

1
pq P δp : Dφ P A˚ :

s
φ
ÝÑk

ℓ
ÝÑk and p R φ.

Definition 10 (k-Multiparty compatibility). S is k-multiparty compatible
(k-mc) if it is k-safe and k-exhaustive.

Definition 10 is a natural extension of the definitions of synchronous multi-
party compatibility given in [24, Definition 4.2] and [8, Definition 4]. The com-
mon key requirements are that every send action must be matched by a receive
action (i.e., send actions are universally quantified), while at least one receive
action must find a matching send action (i.e., receive actions are existentially
quantified). Here, the universal check on send actions is done via the eventual
reception property and the k-exhaustivity condition; while the existential check
on receive actions is dealt with by the progress property. Checking k-exhaustivity
is reminiscent of existential boundedness [32,33,47], as it implicitly requires that
every execution can be re-ordered in an equivalent k-bounded one, see Section 5.

Verifying Asynchronous Interactions via Communicating Session Automata 9

pq!a

pq!aqp?b qp!bpq?a

qp!b

pq?apq?a

qp!b

qp!b
pq?apq?a

Mp Mq Nq N 1
q

Fig. 3. pMp,Mqq is non-exhaustive, pMp, Nqq is 1-exhaustive, pMp, N
1
qq is 2-exhaustive.

Whenever systems are k-obi and ibi, then k-exhaustivity implies that k-
bounded executions are sufficient to make a sound decision wrt. safety. This is
not necessarily the case for systems outside of this class, see Examples 3 and 5.

Example 3. The system pMp,Mq,Mrq in Figure 2 is k-obi for any k, but not ibi

(it is 1-ibi but not k-ibi for any k ě 2). When executing with a bound strictly
greater than 1, there is a configuration where Mq is in its initial state and both
its receive transitions are enabled. The system is 1-safe and 1-exhaustive (hence
1-mc) but it is not 2-exhaustive nor 2-safe. By constraining the automata to
execute with a channel bound of 1, the left branch of Mp is prevented to execute
together with the right branch of Mq. Thus, the fact that the y messages are not
received in this case remains invisible in 1-bounded executions. This example can
be easily extended so that it is n-exhaustive (resp. safe) but not n`1-exhaustive
(resp. safe) by sending/receiving n`1 ai messages.

Example 4. The system in Figure 1 is directed and 1-mc. The system pMp,Mqq
in Figure 3 is safe but not k-mc for any finite k P Ną0. Indeed, for any execution
of this system, at least one of the queues grows arbitrarily large. The system
pMp, Nqq is 1-mc while the system pMp, N

1
qq is not 1-mc but it is 2-mc.

Example 5. The system in Figure 4 (without the dotted transition) is 1-mc, but
not 2-safe; it is not 1-obi but it is 2-obi. In 1-bounded executions, Mr can
execute rs!b ¨ rp!z , but it cannot fire rs!b ¨ rs!a (queue rs is full), which violates
the 1-obi property. The system with the dotted transition is not 1-obi, but it is
2-obi and k-mc for any k ě 1. Both systems are receive directed, hence ibi.

Lemma 1 below is key to show that k-mc implies safety for k-obi and ibi

systems. The proof relies on an intermediate result showing that for any k`1-
reachable configuration s, there is a k-reachable configuration t (from s0) such
that t is k`1-reachable from s. A consequence of this result is that from any
reachable configuration of such systems, it is possible to reach a configuration
whose queues are bounded by k. Hence, these systems are never forced to con-
sume an increasing amount of memory (to store pending messages).

Lemma 1. If S is k-obi, ibi, and k-mc, then it is k`1-obi and pk`1q-mc.

Theorem 1. If S is k-obi, ibi, and k-mc, then it is safe.

10 Julien Lange and Nobuko Yoshida

p :

pq!y

pq!v

ps!x

pr!u

ps!xpq!v

pr!w
q :

rq?z

pq?y

pq?v

r :

rs!b
rq!z

pr?upr?w

rs!a

rs!a

pr?upr?w

rq!z

s :

ps?x

rs?b

rs?a

Mp Mq Mr Ms

Fig. 4. Example of a system which is not 1-obi.

Remark 4. It is undecidable whether there exists a bound k for which an ar-
bitrary system is k-mc. This is a consequence of the Turing completeness of
communicating (session) automata [16, 31, 54].

Although the ibi property is generally undecidable too, it is possible to iden-
tify sound approximations, as we show below. We adapt the dependency relation
from [51] and say that action ℓ1 depends on ℓ from s “ pq;wq, written s $ ℓ ă ℓ1,
iff subj pℓq “ subj pℓ1q _ pchanpℓq “ chanpℓ1q ^ wchanpℓq “ ǫq. Action ℓ1 depends
on ℓ in φ from s, written s $ ℓ ăφ ℓ

1, if the following holds:

s $ ℓ ăφ ℓ
1 ðñ

#

ps $ ℓ ă ℓ2 ^ s $ ℓ2
ăψ ℓ

1q _ s $ ℓ ăψ ℓ
1 if φ “ ℓ2 ¨ψ

s $ ℓ ă ℓ1 otherwise

Definition 11. S is k-chained input bound independent (k-cibi) if for all s “

pq;wq P RSkpSq and p P P, if s
qp?a
ÝÝÝÑk s

1, then @pqp, sp?b, q
1
pq P δp : s ‰ q ùñ

 ps
sp?b
ÝÝÝÑkq ^ p@φ P A

˚ : s1 φ
ÝÑk

sp!b
ÝÝÑk ùñ s $ qp?a ăφ sp!bq.

Definition 12. S is k-strong input bound independent (k-sibi) if for all s “

pq;wq P RSkpSq and p P P, if s
qp?a
ÝÝÝÑk s

1, then @pqp, sp?b, q
1
pq P δp : s ‰ q ùñ

 ps
sp?b
ÝÝÝÑk _ s

1 ÝÑk
˚ sp!b
ÝÝÑkq.

Definition 11 requires that whenever participant p can fire a receive action,
at most one of its receive actions is enabled at s, and no other receive transition
from qp will be enabled until p has made a move, due to the existence of a
dependency chain between the reception of a message and the matching send
of another possible reception. Property k-sibi is a slightly stronger version of
k-cibi, which may be checked more efficiently. Lemma 2 states that k-cibi (resp.
k-sibi), k-obi, and k-exhaustivity imply that the ibi property holds. To prove
this result, we show that for any system that is k-obi, k-cibi (resp. k-sibi),
and k-exhaustive, the k`1-ibi property holds (by induction on the length of
an execution from s0). We show the final result by contradiction, using the key
property of k-exhaustivity: a k-reachable configuration can be reached from any
reachable configuration. Figure 5 (right) gives an intuition of the relationships
between the different properties.

Lemma 2. If S is k-obi, k-cibi (resp. k-sibi) and k-exhaustive, then it is ibi.

Verifying Asynchronous Interactions via Communicating Session Automata 11

The decidability of the k-obi, k-ibi, k-sibi, k-cibi, and k-mc conditions is
straightforward since both RSkpSq (which has an exponential number of states
wrt. k) and ÝÑk are finite, given a finite k. Theorem 2 states the space complexity
of the different procedures, except for k-cibi for which a complexity class is yet
to be determined. We show that the properties are pspace by reducing to an
instance of the reachability problem over a transition system built following the
construction of Bollig et al. [11, Theorem 6.3]. The fact that k-exhaustivity is
pspace-hard essentially follows from Theorem 8 and the results by Genest et
al. [33, Proposition 5.5]. To show that k-obi, k-ibi, k-sibi, and k-safety are
pspace-hard, we reduce the problem of checking if the product of a set of finite
state automata has an empty language to checking each property, following a
similar construction to the one in [15, Theorem 3].

Theorem 2. The problems of checking the k-obi, k-ibi, k-sibi, k-safety, and
k-exhaustivity properties are all decidable and pspace-complete (with k P Ną0

given in unary). The problem of checking the k-cibi property is decidable.

3.2 Local bound-agnosticity

We introduce local bound-agnosticity and show that it fully characterises k-
exhaustive systems. Local bound-agnosticity guarantees that each communicat-
ing automaton behave in the same manner for any bound greater than or equal
to some k. Therefore such systems may executed transparently under a bounded
semantics, i.e., the communication model in Go and Rust. First, we define the
k-bounded transition system of communicating automata and its projection.

Definition 13 (Transition system). The k-bounded transition system of S is
the labelled transition system TSkpSq “ pN, s0, ∆q such that N “ RSkpSq, s0
is the initial configuration of S, ∆ Ď NˆAˆN is the transition relation, and

ps, ℓ, s1q P ∆ if and only if s
ℓ
ÝÑk s

1.

Definition 14 (Projection). Let T be a labelled transition system (LTS) over
A. The projection of T onto p, written πǫppT q, is obtained by replacing each label
ℓ in T by πppℓq.

Recall that the projection of action ℓ, written πppℓq, is defined in Section 2.
The automaton πǫppTSkpSqq is essentially the local behaviour of participant p

within the transition system TSkpSq. When each automaton in a system S be-
haves equivalently for any bound greater than or equal to some k, we say that
S is locally bound-agnostic. Formally, S is locally bound-agnostic for k when
πǫppTS kpSqq and πǫppTSnpSqq are weakly bisimilar («) for each participant p and
any n ě k. For k-obi and ibi systems, local bound-agnosticity is a necessary and
sufficient condition for k-exhaustivity, as stated in Theorem 3 and Corollary 1.
Corollary 1 is a straightforward consequence of k-exhaustivity and Theorem 3.

Theorem 3. Let S be a system.

(1) If Dk P Ną0 : @p P P : πǫppTSkpSqq« π
ǫ
ppTSk`1pSqq, then S is k-exhaustive.

12 Julien Lange and Nobuko Yoshida

(2) If S is k-obi, ibi, and k-exhaustive, then @p P P :πǫppTSkpSqq«π
ǫ
ppTSk`1pSqq.

Corollary 1. Let S be k-obi and ibi such that:
Dk P Ną0 : @p P P : πǫppTSkpSqq« π

ǫ
ppTSk`1pSqq.

Then, @n ě k : @p P P : πǫppTSkpSqq« π
ǫ
ppTSnpSqq.

We note that Theorem 3 (1) is reminiscent of the (pspace-complete) veri-
fication procedure for existentially bounded systems that have the stable prop-
erty [33] (an undecidable property). However, recall that k-exhaustivity is not
sufficient to make a sound decision wrt. safety, see Examples 3 and 5. We give an
effective procedure to check k-exhaustivity and related properties in Section 4.

4 Partial order reduction for csa

In this section, we give a partial order reduction algorithm that allow us to
mitigate the exponential cost of checking k-mc (wrt. the bound k). Partial order
reduction is a classical technique to reduce the explored state space in model
checking by exploiting the commutativity of independent actions [68].

Next, we define function partitionpsq which partitions the transitions enabled
at s, grouping them by subject and arranging them into a sorted list.

Definition 15 (Partition). Let S, s P RSkpSq, and TSkpSq “ pN, s0, ∆q. The

partition of the enabled transitions at s is partitionpsq
def
“ L1 ¨ ¨ ¨Ln such that

1. tℓ | s
ℓ
ÝÑk s

1u “
Ť

1ďiďn Li
2. @1 ď i ‰ j ď n :

(a) Li X Lj “ H and
(b) ℓi P Li, ℓj P Lj ùñ subj pℓiq ‰ subj pℓjq

3. @1 ď i ď n : ℓ, ℓ1 P Li ùñ subj pℓq “ subj pℓ1q
4. @1 ď i ă j ď n : |Li| ď |Lj |

In Definition 15, Conditions (1) and (2a) specify that the family of sets
tLiu1ďiďn is a partition of the transitions enabled at s. Conditions (2b) and (3)
specify that the function groups transitions executed by the same participant
together. Condition (4) guarantees that the list is sorted by increasing order of
cardinality, to help reduce the number of redundant branches in Algorithm 1.
Definition 15 is used in Algorithm 1 which generates the transition relation ∆̂

of a reduced transition system (the set of states is implicit from ∆̂).

Definition 16 (Reduced transition system). The reduced k-bounded tran-
sition system of S is a labelled transition system RTSkpSq “ pN̂ , s0, ∆̂q which is
a sub-graph of TSkpSq such that ∆̂ is obtained from Algorithm 1 and N̂ is the
smallest set such that s0 P N̂ and s P N̂ ùñ Dps1, ℓ, s2q P ∆̂ : s P ts1, s2u. We

write s
ℓ
Ýãk s

1 iff ps, ℓ, s1q P ∆̂.

Verifying Asynchronous Interactions via Communicating Session Automata 13

1 visited Ð H // visited states

2 accum Ð H // transitions

3 stack Ð rxs0, rsys // todo

4 while stack ‰ rs do
5 xs,Ey Ð poppstack q
6 if s R visited then
7 visited Ð visited Y tsu
8 if E “ rs then
9 E Ð partitionpsq

10 end
11 foreach ℓ P headpEq do
12 s1 Ð succps, ℓq
13 pushpstack , xs1, tailpEqyq
14 accum Ð accum Y tps, ℓ, s1u

15 end

16 end

17 end
18 return accum

Algorithm 1: Computing RTSkpSq.

f pS,T q“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

psnd-dirpSq _ k-obipS, T qq

^

prcv-dirpSq _ k-sibipS, T q

_k-cibipS, T qq

^

pk-exhaustivepS, T qq

1 for 1 ď k ď max do
2 T Ð RTSkpSq
3 if f pS, T q then
4 return S is k-safe on T
5 end

6 end
7 return failed

Algorithm 2: k-mc check.

Algorithm 1 is adapted from the persistent-set selective search algorithm
from [34, Chapter 4], where instead of computing a persistent state for each
explored state, we use a partition of enabled transitions. Each Li in partitionpsq
can be seen as a persistent set since no transition outside of Li can affect the
ability of transitions in Li to fire. Storing all enabled transitions in a list that is
progressively consumed guarantees that no transition is forever deferred, hence
the cycle proviso [68, Condition C3ii] is satisfied.

Algorithm 1 starts by initialising the required data structures in Lines 1-3,
i.e., the set of visited states (visited) and the set of accumulated transitions
(accum) are initialised to the empty set, while the stack contains only the pair
xs0, rsy consisting of the initial state of TS kpSq and the empty list. We overload
rs so that it denotes the empty list and the empty stack. The algorithm iterates
on the content of stack until it is empty. Each element of the stack is a pair
containing a state s and a list of sets of transitions. For each pair xs, Ey, if E is
empty, then we compute a new partition (Line 9). Then, we iterate over the first
set of transitions in E (we assume headpEq “ H when E “ rs), so to generate
the successors of s according to headpEq, see Lines 11-14. In Line 12, we write
succps, ℓq for the (unique) configuration s1 such that s

ℓ
ÝÑk s

1. In Line 13, the tail
of the list E is pushed on the stack along with the successors s1. Finally, the
algorithm returns a new set of transitions (Line 18).

We adapt the definitions of k-obi and k-sibi to reduced transition systems,
the definition of reduced k-cibi is similar (see Definition 26 in the appendix).

14 Julien Lange and Nobuko Yoshida

Send directed
k-obi

reduced k-obi

Receive directed
(reduced)

k-sibi

(reduced) k-cibi
ibi

Fig. 5. Overview of output and input bounded independence variations.

Definition 17 (Reduced k-obi). Posing RTSkpSq “ pN̂ , s0, ∆̂q. System S

is reduced k-obi if for all s “ pq;wq P N̂ and p P P, if s
pq!a
ÝÝÑk, then

@pqp, pr!b, q
1
pq P δp : s

pr!b
ÝÝÑk.

Definition 18 (Reduced k-sibi). Posing RTSkpSq “ pN̂ , s0, ∆̂q. System S

is reduced k-sibi if for all s “ pq;wq P N̂ and p P P, if s
qp?a
ÝÝÝãk, then

@pqp, sp?b, q
1
pq P δp : s ‰ q ùñ ps

sp?b
ÝÝÝãk _ s Ýãk

˚ sp!b
ÝÝãkq.

The k-sibi and k-cibi properties (used to approximate ibi) can be decided
on the reduced transition system (Theorem 4). The reduced k-obi property is
strictly weaker than the k-obi property, see Example 6. However, the reduced
k-obi property can replace k-obi in Theorem 1 while preserving safety, see The-
orem 5. Figure 5 gives an overview of the relationships between the different
variations of k-obi, k-ibi, and directedness. The inclusions between ibi, k-cibi,
and k-sibi hold only for (reduced) k-obi and k-exhaustive systems, see Lemma 2.

Theorem 4. Let S be reduced k-obi. S is reduced k-cibi (resp. k-sibi) iff S is
k-cibi (resp. k-sibi).

Lemma 3. Let S be a system, if S is k-obi, then S is also reduced k-obi.

Theorem 5. If S is reduced k-obi, ibi, and k-mc, then it is safe.

Example 6. The system below is reduced 1-obi, but not 1-obi. There is a con-
figuration in TS 1pSq from which Mp can fire pr!d but not pq!b. Depending on
the ordering chosen to sort the list of sets of transitions in partitionp_q, pq?a
may always be executed before Mp reaches the violated state in RTS1pSq, hence
hiding the violation of k-obi in the reduced transition system.

p : pq!a

rp?c

pq!b
pr!d q : pq?a pq?b s : rp!c r : pr?d

This system is k-exhaustive for any k ě 1 and (reduced) k-obi for any k ě 2.

Below we adapt the definitions of safety (Definition 4) and k-exhaustivity
(Definition 9) to reduced transition systems.

Definition 19 (Reduced k-safety). Posing RTSkpSq “ pN̂ , s0, ∆̂q. System S

is reduced k-safe if the following conditions hold for all s “ pq;wq P N̂ ,

Verifying Asynchronous Interactions via Communicating Session Automata 15

1. For all pq P C, if wpq “ a ¨ w1, then s Ýãk
˚ pq?a
ÝÝÝãk.

2. For all p P P, if qp is a receiving state, then s Ýãk
˚ qp?a
ÝÝÝãk for some q P P

and a P Σ.

Definition 20 (Reduced k-exhaustivity). Posing RTSkpSq “ pN̂ , s0, ∆̂q.
System S is reduced k-exhaustive if for all s “ pq;wq P N̂ and p P P, if qp is a

sending state, then @pqp, ℓ, q
1
pq P δp : Dφ P A

˚ : s
φ
Ýãk

ℓ
Ýãk and p R φ.

Next, we state that checking k-safety (resp. k-exhaustivity) is equivalent to
checking reduced k-safety (resp. k-exhaustivity), which implies that checking k-
mc can be done on RTSkpSq instead of TSkpSq, the former being generally much
smaller than the latter. We note that the reduction requires (reduced) k-obi and
k-ibi to hold as they imply that if a transition pqp, ℓ, q

1
pq is enabled at s “ pq;wq,

then we have that (i) all send actions outgoing from local state qp are enabled at
s (and they will stay enabled until one is fired) or (ii) exactly one receive action
is enabled from qp (and it will stay enabled until it is fired).

Theorem 6. Let S be reduced k-obi and reduced k-ibi. (1) S is reduced k-safe
iff S is k-safe. (2) S is reduced k-exhaustive iff S is k-exhaustive.

Algorithm 2 checks whether a system S is k-mc for some k ď max, where
max is a user-provided constant. At each iteration, it constructs the RTSkpSq of
the input system S. If k is a sufficient bound to make a sound decision (function
f pS, T q), then it tests for k-safety, otherwise it proceeds to the next iteration
with k`1. Function f pS, T q checks whether the premises of Theorem 5 hold,
i.e., if S is not send directed, written snd-dirpSq, then it checks for k-obi; S is
not receive directed, written rcv-dirpSq, then it checks for S-sibi or k-cibi; then
checks whether the k-exhaustivity condition holds (all conditions are checked on
RTSkpSq).

Finally, we state the optimality of Algorithm 1: it never explores two execu-
tions which are —-equivalent more than once. Our notion of optimality is slightly
different from that of [1] since Algorithm 1 does not use sleep sets.

Lemma 4. Let S be a system such that RTSkpSq “ pN̂ , s0, ∆̂q, for all φ and φ1

such that s0
φ
Ýãk and s0

φ1

Ýãk, we have that: φ—φ1 ùñ φ “ φ1.

5 Existentially bounded and synchronisable automata

In this section, we formally state the relationships between k-exhaustivity, exis-
tential boundedness, and synchronisability. Existentially bounded communicat-
ing automata [32,33,47] are a class of communicating automata whose executions
can always be scheduled in such a way that the number of pending messages is
bounded by a given value. The synchronisable systems we study in this sec-
tion were introduced recently in [15]. Informally, communicating automata are
synchronisable if each of their executions can be scheduled in such a way that
it consists of sequences of “exchange phases”, where each phase consists of a
bounded number of send actions, followed by a sequence of receive actions.

16 Julien Lange and Nobuko Yoshida

k-obi and ibi Communicating Session Automata

DS-k-bounded (Def. 23)

D-k-bounded (Def. 22)

k-synchronisable (Def. 24)

k-exhaustive (Def. 9)

Eventual reception (Def. 4 (1))

Stable (Def. 5)

Safe (Def. 4)

k–mc (Def. 10)

7

1 9 108 45

2

Fig. 6. Relationship between k-exhaustivity, existentially k-boundedness, and k-
synchronisability in k-obi and ibi csa (the circled numbers refer to Table 1).

5.1 Kuske and Muscholl’s existential boundedness

Traditionally, existentially bounded communicating automata are defined on
communicating automata that feature (local) accepting states and in terms of
accepting runs. An accepting run is an execution (starting from s0) which ter-
minates in a configuration pq;wq where each qp is a local accepting state. In our
setting, we simply consider that every local state qp is an accepting state, hence
any execution φ starting from s0 is an accepting run. We first study existen-
tial boundedness as defined in [47] as it matches more closely k-exhaustivity, we
study the “classical” definition of existential boundedness [33] in Section 5.2.

Following [47], we say that an execution φ P A˚ is valid if for any prefix ψ
of φ and any channel pq P C, we have that π?

pqpψq is a prefix of π!
pqpψq, i.e., an

execution is valid if it models the fifo semantics of communicating automata.

Definition 21 (Causal equivalence [47]). Given φ, ψ P A˚, we define: φ≎ψ

iff φ and ψ are valid executions and φ—ψ. We write rφs≎ for the equivalence
class of φ wrt. ≎.

Note that ≎ is a congruence on valid executions wrt. concatenation and that
any execution starting from s0 is valid.

Definition 22 (Existentially bounded [47]). We say that a valid execution
φ is k-match-bounded if, for every prefix ψ of φ the difference between the num-
ber of matched events of type pq! and those of type pq? is bounded by k, i.e.,
mint|π!

pqpψq|, |π
?
pqpφq|u ´ |π?

pqpψq| ď k.
Write A˚|k for the set of k-match-bounded words. An execution φ is existentially
k-bounded if rφs≎ X A˚ |k ‰ H. A system S is existentially k-bounded, written

D-k-bounded, if each execution in tφ | Ds : s0
φ
ÝÑ su is existentially k-bounded.

Verifying Asynchronous Interactions via Communicating Session Automata 17

Example 7. Consider Figure 3. pMp,Mqq is not existentially k-bounded, for any
k: at least one of the queues must grow infinitely for the system to progress. Sys-
tems pMp, Nqq and pMp, N

1
qq are existentially bounded since any of their execu-

tions can be scheduled to an ≎-equivalent execution which is 2-match-bounded.

Next, we state the relationship between k-exhaustivity and existential bound-
edness which is illustrated in Figure 6 for k-obi and ibi csa. The circled num-
bers in the figure refer to key examples summarised in Table 1. Existentially
k-bounded systems strictly include k-exhaustive systems, see the first part of
Theorem 7. The strict inclusion is due to systems that do not have the eventual
reception property, as we illustrate in Example 8. Recall that the set of k-mc

systems is strictly included in the set of k-exhaustive systems, by Definition 10;
hence k-mc systems are included in the set of existentially k-bounded systems.

Example 8. The system below is D-1-bounded but is not k-exhaustive for any k.

s :
sr!a

sp!b

r :
sr?a

p :
sp?c

For any bound k, the channel sp eventually gets full and therefore the send
action sp!b can no longer be fired; hence it does not satisfy k-exhaustivity. Note
that each execution can be reordered into a 1-match-bounded execution since
none of the b’s are ever matched.

Theorem 7. (1) If S is (reduced) k-obi, ibi, and k-exhaustive, then it is ex-
istentially k-bounded. (2) If S is existentially k-bounded and has the eventual
reception property, then it is k-exhaustive.

We show (1) by constructing an existentially bounded execution from an
arbitrary execution by using k-exhaustivity (to identify an extended k-bounded
execution) then progressively removing additional actions. For (2), we extend a
k-bounded execution φ so that all messages sent in φ are matched (using the fact
that S has the eventual reception property), then use existential boundedness
to re-order the extended φ into a k-bounded execution.

5.2 Existentially stable bounded communicating automata

The “classical” definition of existentially bounded communicating automata as
found in [33] differs slightly from Definition 22, as it relies on a different notion
of accepting runs, see [33, page 4]. Assuming that all local states are accepting,
we adapt their definition to our setting as follows: a stable accepting run is an
execution φ starting from s0 which terminates in a stable configuration. We
formalise this adaptation in Definition 23.

Definition 23 (Existentially stable bounded [33]). A system S is exis-
tentially stable k-bounded, written DS-k-bounded, if for each execution φ in

tφ | Dpq; ǫq P RS pSq : s0
φ
ÝÑ pq; ǫqu there is ψ such that s0

ψ
ÝÑk with φ≎ψ.

18 Julien Lange and Nobuko Yoshida

Table 1. Comparison of the properties for key examples (k fixed when required), where
direct. stands for directed, obi for k-obi, sibi for k-sibi, er for eventual reception
property, sp for stable property, exh. for k-exhaustive, D(S)-b for D (stable) bounded,
and syn. for n-synchronisable (for some n P Ną0).

System Ref. k direct. obi sibi safe er sp exh. DS-b D-b syn.

1 pMc,Ms,Mlq Fig. 1 1 yes yes yes yes yes yes yes yes yes yes
2 pMs,Mq,Mrq Ex. 2 1 yes yes yes no yes yes yes yes yes yes
3 pMp,Mq,Mrq Fig. 2 ě 3 no yes no no no no no yes yes no
4 pMp,Mqq Fig. 3 any yes yes yes yes yes no no yes no no
5 pMp, N

1
qq Fig. 3 2 yes yes yes yes yes no yes yes yes no

6 pMp,Mq,Mr,Msq Fig. 4 1 no yes yes yes yes no yes yes yes no
7 pMs,Mr,Mpq Ex. 8 any yes yes yes no no no no yes yes yes
8 pMp,Mqq Ex. 9 any yes yes yes yes yes yes no no no no
9 pMp,Mqq Ex. 12 1 yes yes yes yes yes yes yes yes yes no
10 pMp,Mq,Mrq Fig. 8 any yes yes yes no no no no yes no no

A system is existentially stable k-bounded if each of its executions leading
to a stable configuration can be re-ordered into a k-bounded execution (from
s0). A key result from [33] is that the problem of testing whether a system is
existentially stable k-bounded is undecidable (whether or not an explicit k is
given). However, given a bound k and a system S that has the stable property,
it is decidable (pspace-complete) whether S is existentially stable k-bounded.
Note that deciding whether a system has the stable property is itself undecidable.

Example 9. pMp,Mq) below is not D(S)-k-bounded, nor k-exhaustive, for any k.

p :
pq!a

pq!b

qp?c

qp?d

q :
qp!c

qp!d

pq?a

pq?b

For instance, execution φ below is maxtm,nu-bounded. Hence, for any finite k,
we can generate an execution that is not existentially (stable) k-bounded.

φ “ pq!a ¨ ¨ ¨ pq!a

n times

¨ pq!b ¨ qp!c ¨ ¨ ¨ qp!c

m times

¨qp!d ¨ pq?a ¨ ¨ ¨ pq?a

n times

¨ pq?b ¨ qp?c ¨ ¨ ¨ qp?c

m times

¨ qp?d

Note that φ leads to a stable configuration (all sent messages are received).

Lemma 5. Let S be a system and φ P A˚ such that s0
φ
ÝÑ s “ pq; ǫq, then φ is

k-match-bounded if and only if φ is k-bounded for s0.

The result below follows from Lemma 5 and the fact that the set of executions
that must satisfy boundedness in Definition 23 is included in the set of executions
considered in Definition 22.

Theorem 8. (1) If S is existentially k-bounded, then it is existentially stable
k-bounded. (2) If S is existentially stable k-bounded and has the stable property,
then it is existentially k-bounded.

Verifying Asynchronous Interactions via Communicating Session Automata 19

We illustrate the relationship between existentially stable bounded commu-
nicating automata and the other classes in Figure 6. The examples below further
illustrate the strictness of the inclusions, see Table 1 for a summary.

Example 10. Consider the systems in Figure 3. pMp,Mqq and pMp, N
1
qq are (triv-

ially) existentially stable 1-bounded since none of their (non-empty) executions
terminate in a stable configuration. The system pMp, Nqq is existentially stable
2-bounded since each of its executions can be scheduled in such a way that no
buffer contains more than 2 messages.

Example 11. The system in Example 8 is (trivially) DS-1-bounded: none of its
(non-empty) executions terminate in a stable configuration (b is never received).

We state the relationship between k-exhaustive and existentially stable k-
bounded systems in Theorem 9 below which relies on Lemma 6.

Lemma 6. Let S be an existentially stable k-bounded system with the stable
property, then for all s P RSkpSq, there is t stable such that s ÝÑk

˚t.

Theorem 9. Let S be an D(S)-k-bounded system with the stable property, then
it is k-exhaustive.

5.3 Synchronisable communicating session automata

In this section, we study the relationship between the k-synchronisable systems
of [15] and k-exhaustive systems via existentially bounded communicating au-
tomata. The original definition of k-synchronisable system [15, Definition 1] is
based on communicating automata with mailbox semantics, i.e., each automaton
has one input queue. Here, we adapt the definition so that it matches our point-
to-point semantics. We write A! for the set of send actions, i.e., AXpCˆt!uˆΣq,
and A? for the set of receive actions, i.e., AX pC ˆ t?u ˆΣq.

Definition 24 (k-synchronisable). A valid execution φ “ φ1 ¨ ¨ ¨φn is a k-
exchange iff:

1. @1 ď i ď n : φi P A
˚
!
¨A˚

?
^ |φi| ď 2k

2. @pq P C : @1 ď i ď n : π!
pqpφiq ‰ π?

pqpφiq ùñ @i ă j ď n : π?
pqpφjq “ ǫ.

We write A˚‖k for the set of executions that are k-exchanges and say that an exe-
cution φ is k-synchronisable if rφs≎XA˚‖k‰ H. A system S is k-synchronisable

if each execution in tφ | Ds : s0
φ
ÝÑ su is k-synchronisable.

Condition (1) says that execution φ should be a sequence of an arbitrary
number of send-receive phases, where each phase consists of at most 2k actions.
Condition (2) says that if a message is not received in the phase in which it is
sent, then it cannot be received in φ. Observe that the bound k is on the number
of actions (over possibly different channels) in a phase rather than the number
of pending messages in a given channel.

20 Julien Lange and Nobuko Yoshida

Example 12. The system below is 1-mc and D(S)-1-bounded, but it is not k-
synchronisable for any k.

p : pq!a qp?c pq!b qp?d q : qp!c qp!d pq?a pq?b

The subsequences of send-receive actions in the ≎-equivalent executions below
are highlighted:

φ1 “ pq!a ¨ qp!c ¨ qp?c ¨ qp!d ¨ pq?a ¨ pq!b ¨ qp?d ¨ pq?b

φ2 “ pq!a ¨ qp!c ¨ qp!d ¨ qp?c ¨ pq?a ¨ pq!b ¨ qp?d ¨ pq?b

Execution φ1 is 1-bounded for s0, but it is not a k-exchange since, e.g., a is
received outside of the phase where it is sent (i.e., pq!a ¨ qp!c ¨ qp?c). Execution
φ2 is 2-bounded for s0, but it is not a k-exchange, because d is received outside
of the phase where it is sent. In the terminology of [15], this system is not k-
synchronisable because there is a receive-send dependency between the exchange
of message c and b, i.e., p must receive c before it sends b. Hence, there is no
execution that is ≎-equivalent to φ1 and φ2 and is a k-exchange.

We now state the formal relationship between existentially bounded and syn-
chronisable systems, which allows us to relate k-exhaustive and synchronisable
systems using Theorem 7. Our final result for this section is Theorem 10 which
follows easily from Lemma 7 below. The proof of Lemma 7 relies on the facts
that (i) the number of send actions is bounded in each send-receive phase and
(ii) a message that is un-matched in the phase it is sent can never be received.

Lemma 7. Let φ be a valid execution. If φ is a k-exchange then it is a k-match-
bounded execution.

Theorem 10. (1) If S is k-synchronisable, then it is existentially k-bounded.
(2) If S is k-synchronisable and has the eventual reception property, then it is
k-exhaustive.

Example 13. The (non-ibi) system in Figure 2 is not k-synchronisable for any
k, due to executions consisting of the left branch of Mp and the right branch of
Mq which are not synchronisable.

Example 14. The system pMp,Mqq in Figure 3 is not k-synchronisable for any k.
The system pMp, N

1
qq is not k-synchronisable for any k since the second emission

of message b cannot be received in the exchange from which it is sent. Instead,
the system pMp, Nqq in Figure 3 is 3-synchronisable since each of its executions
can be rescheduled so to consists of the following 3-exchange:

pq!a ¨ pq!a ¨ qp!b ¨ pq?a ¨ pq?a ¨ qp?b.

Figure 6 and Table 1 summarise the results of § 5 wrt. k-obi and ibi csa.

Verifying Asynchronous Interactions via Communicating Session Automata 21

Table 2. Experimental evaluation. |P| is the number of participants in the system, k
is the bound used for the verification, |RTS | is the number of transitions in RTSkpSq,
direct. stands for directed, k-obi stands for reduced k-obi, k-cibi stands for reduced
k-cibi, Time is the time taken to check all the properties shown in this table, and gmc

is yes if the system is generalised multiparty compatible [51].

Example |P| k |RTS | direct. k-obi k-cibi k-mc Time gmc

Client-Server-Logger 3 1 11 yes yes yes yes 0.04s no
4 Player game: [51] 4 1 20 no yes yes yes 0.05s yes
Bargain [51] 3 1 8 yes yes yes yes 0.03s yes
Filter collaboration [80] 2 1 10 yes yes yes yes 0.03s yes
Alternating bit: [71] 2 1 8 yes yes yes yes 0.04s no
TPMContract v2: [37] 2 1 14 yes yes yes yes 0.04s yes
Sanitary agency: [73] 4 1 34 yes yes yes yes 0.07s yes
Logistic: [65] 4 1 26 yes yes yes yes 0.05s yes
Cloud system v4 [36] 4 2 16 no yes yes yes 0.04s yes
Commit protocol [15] 4 1 12 yes yes yes yes 0.03s yes
Elevator: [15] 5 1 72 no yes no yes 0.14s no
Elevator-dashed: [15] 5 1 80 no yes no yes 0.16s no
Elevator-directed: [15] 3 1 41 yes yes yes yes 0.07s yes
Dev system [70] 4 1 20 yes yes yes yes 0.05s no
Fibonacci [59] 2 1 6 yes yes yes yes 0.03s yes
Sap-Negot. [59,64] 2 1 18 yes yes yes yes 0.04s yes
sh [59] 3 1 30 yes yes yes yes 0.06s yes
Travel agency [59,76] 3 1 21 yes yes yes yes 0.05s yes
http [41,59] 2 1 48 yes yes yes yes 0.07s yes
smtp [42,59] 2 1 108 yes yes yes yes 0.08s yes

6 Experimental evaluation

We have implemented our theory in a tool [45] which takes two inputs: (i) a sys-
tem of communicating automata and (ii) a bound max; then applies Algorithm 2
to check whether the csa are k-mc for some k ď max.

We have tested our tool on 20 examples taken from the literature, which are
reported in Table 2. The table shows that the tool terminates virtually instanta-
neously on all examples. The table suggests that many systems are indeed k-mc

and most can be easily adapted to validate bound independence. The examples
marked with : have been slightly modified to make them csa that validate k-obi

and ibi. To remove mixed states, we take only one of the possible interleavings
between mixed actions (we take the send action before receive action to preserve
safety). The 4 Player game from [51] has been modified so that interleavings of
mixed actions are removed (it is the only example of Table 2 that is k-cibi but
not k-sibi). The Logistic example from [65, Figure 11.4] has been modified so
that the Supplier interacts sequentially (instead of concurrently) with the Ship-
per then the Consignee. We have added two dummy automata to the Elevator
example from [15] which send (resp. receive) messages to (resp. from) the Door
so that a mixed state can be removed. The Elevator-dashed example is a variant
of the Elevator which is not synchronisable. These examples are not k-ibi (for

22 Julien Lange and Nobuko Yoshida

any k) because the Elevator automaton can reach a state where it can consume
messages sent by different participants (messages doorClosed and openDoor).
This situation cannot occur with a mailbox semantics, as in [15], since each au-
tomaton has only one input queue. The Elevator-directed example is another
variation where all the automata are directed.

We have assessed the scalability of our approach with automatically gener-
ated examples, which we report in Figure 7. Each system considered in these
benchmarks consists of 2m (directed) csa for some m ě 1 such that S “
pMpiq1ďiď2m, and each automaton Mpi is of the form (when i is odd):

pi :

pipi`1!a1

pipi`1!an

pipi`1!a1

pipi`1!an

pi`1pi?a1

pi`1pi?an

pi`1pi?a1

pi`1pi?an

k times k times

Each Mpi first sends k messages to participant pi`1, then receives k messages
from pi`1. Each message is taken from an alphabet ta1 , . . . , anu (with n ě 1).
Mpi has the same structure when i is even, but interacts with pi´1 instead.
Observe that any system constructed in this way is k-mc for any k ě 1, n ě 1,
and m ě 1. The shape of these systems allows us to measure how our approach
fares in the worst case (high number of branches and interleavings). Figure 7
gives the time taken for Algorithm 2 to terminate (y axis) wrt. the number of
transitions in RTSkpSq where k is the least natural number for which the system
is k-mc. Each plot contains a fitted exponential curve which approximates the
data points. The plot on the left in Figure 7 gives the timings when k is increasing
(every increment from k “ 2 to k “ 100) with the other parameters fixed (n “ 1

and m “ 5). The middle plot gives the timings when m is increasing (every
increment from m “ 1 to m “ 26) with the other parameters fixed (k “ 10 and
n “ 1). The right-hand side plot gives the timings when n is increasing (every
increment from n “ 1 to n “ 10) with the other parameters fixed (k “ 2 and
m “ 1). The largest RTSkpSq on which we have tested our tool has 12222 states
and 22220 transitions, and the verification took just under 17 minutes.3 Observe
that partial order reduction mitigates the increasing size of the transition system
on which k-mc is checked, e.g., these experiments show that parameters k and
m have only a linear effect on the number of transitions in RTSkpSq — see
horizontal distances between data points. Unsurprisingly however the number of
transitions in RTSkpSq increases exponentially with n.

7 Related work

Theory of communicating automata Communicating automata were introduced
in the 1980s [16] and have since then been studied extensively, namely through
their connection with message sequence charts (MSC) [57]. We focus on closely

3 All the benchmarks in this paper were run on an 8-core Intel i7-7700 machine with
16GB RAM running a 64-bit Linux.

Verifying Asynchronous Interactions via Communicating Session Automata 23

0 250 500 750 100
0

125
0

150
0

175
0

200
0

Number of transitions in RTSk(S)

0

50

100

150

200

250

300

350

400

Ti
m
e
(s
ec

on
ds

)

F(x) = 14.6 * 1.0017x−25.1
Time with k=2..100, n=1, m=5

0 200 400 600 800 100
0

Number of transitions in RTSk(S)

0

200

400

600

800

1000

1200

Ti
m
e
(s
ec

on
ds

)

F(x) = 5.3 * 1.0053x−24.3
Time with k=10, n=1, m=1..26

0
500

0
100

00
150

00
200

00

Number of transitions in RTSk(S)

0

200

400

600

800

1000

Ti
m
e
(s
ec

on
ds

)

F(x) = 10.4 * 1.0002x−10.3
Time with k=2, n=1..10, m=1

Fig. 7. Benchmarks: increasing k (left), increasingm (middle), and increasing n (right).

related works. Several works achieved decidability results by restricting the
model. For instance, some of these works substitute reliable and ordered channels
with bag or lossy channels [2,3,18,19]. La Torre et al. [48] restrict the topology of
the network so that each automaton can only consume messages from one queue
(but can send messages to all other queues). Peng and Purushothaman [69] show
that reachability, deadlock detection, and un-boundedness detection are decid-
able for the class of systems where each pair of automata can only exchange one
type of message and the topology of the network is a simple cycle. DeYoung and
Pfenning [27] investigate a relationship between proofs in a fragment of linear
logic and communicating automata that interact via a pipeline topology.

Out of these several variations, existentially bounded communicating au-
tomata stand out because they preserve the fifo semantics of communicating
automata, do not restrict the topology of the network, and include systems with
an infinite state-space. Existential bounds for MSCs first appeared in [56] and
were later applied to the study of communicating automata through MSCs and
monadic second order logic in [32,33]. Given a bound k and an arbitrary system of
(deterministic) communicating automata S, it is generally undecidable whether S
is existentially k-bounded. However, the question becomes decidable when S has
the stable property (a property called deadlock-freedom in [33,47]), the problem
is pspace-complete. The stable property is generally a desirable characteristic,
but it is generally undecidable. Hence the bounded class is not directly applica-
ble to verifying properties of message passing programs since its membership is
undecidable overall. We have shown that (i) k-obi, ibi, and k-exhaustive csa

systems are (strictly) included in the class of existentially bounded systems, (ii)
systems that are existentially bounded (in the sense of [47]) and have the even-
tual reception property are k-exhaustive; and (iii) systems that are existentially
stable bounded [33] and have the stable property are k-exhaustive. Hence, our
work gives a sound practical procedure to check whether csa are existentially
bounded. Inspired by the work in [33], Darondeau et al. [21] give decidability
results for “data-branching” task systems, which are communicating automata
with internal transitions whose only branching states are those where an inter-
nal choice takes place. The relationship between communicating automata and
monadic second order logic was further studied in [10, 12]. To the best of our

24 Julien Lange and Nobuko Yoshida

knowledge, the only tools dedicated to the verification of (unbounded) communi-
cating automata are McScM [38] and Chorgram [52]. Bouajjani et al. [15] study
a variation of communicating automata with mailboxes (one input queue per au-
tomaton). They introduce the class of synchronisable systems and a procedure
to check whether a system is k-synchronisable; it relies on executions consisting
of k-bounded exchange phases. Given a system and a bound k, it is decidable
(pspace-complete) whether its executions are equivalent to k-synchronous exe-
cutions. In Section 5.3, we have shown that any k-synchronisable system which
satisfies eventual reception is also k-exhaustive, see Theorem 10. Our charac-
terisation result, based on local bound-agnosticity (Theorem 3), is unique to
k-exhaustivity. It does not apply to existentially boundedness nor synchronis-
ability, see, e.g., Example 8. The term “synchronizability” has been used by Basu
et al. [5,6] to refer to another procedure for checking properties of communicating
automata with mailboxes. Their notion of synchronizability requires that, for a
given system, its synchronous executions are equivalent to its asynchronous ex-
ecutions when considering send actions only. Finkel and Lozes [30] have later
shown that this notion of synchronizability is in fact undecidable.

In future work, we would like to study whether our results can be adapted
to automata which communicate via mailboxes. We note that a system that is
safe with a point-to-point semantics, may not be safe with a mailbox semantics,
and vice-versa. For instance, the system in Figure 2 is safe when executed with
mailbox semantics. However, the system below is safe in the point-to-point se-
mantics, but unsafe with mailbox semantics due to the fact that r may receive
b before a. To the best of our knowledge, precise relationships and translations
between mailbox and point-to-point semantics have yet to be studied.

p : pr!a r : pr?a qr?b r : qr!b

Multiparty compatibility The first definition of multiparty compatibility ap-
peared in [24, Definition 4.2], inspired by the work in [35], to characterise the
relationship between global types and communicating automata. This definition
was later adapted to the setting of communicating timed automata in [8]. Lange
et al. [51] introduced a generalised version of multiparty compatibility (gmc)
to support communicating automata that feature mixed or non-directed states.
Because our results apply to automata without mixed states, k-mc is not a
strict extension of gmc, and gmc is not a strict extension of k-mc either, as
it requires the existence of synchronous executions. We discuss how our results
may be extended to support communicating automata with mixed states in Sec-
tion 8. In future work, we will develop an algorithm to synthesise representative
choreographies from k-mc systems, using the algorithm in [51].

Communicating automata and programming languages The notion of multiparty
compatibility is at the core of recent works that apply session types techniques
to mainstream programming languages. Ng and Yoshida [62] use the multi-
party compatibility defined in [51] to detect deadlocks in Go programs. Hu and
Yoshida [42] study the well-formedness of Scribble protocols [76] through the

Verifying Asynchronous Interactions via Communicating Session Automata 25

p :
pr!a

pr!b pq!b
q : pq?b qr!c r :

qr?c

pr?a

Fig. 8. Example of a non D-bounded system.

multiparty compatibility of their projections. These protocols are used to gener-
ate various endpoint APIs implementing a Scribble specification [42, 43, 59] and
to produce runtime monitoring tools [58, 60, 61]. Taylor et al. [79] use multi-
party compatibility and choreography synthesis [51] to automate the analysis of
the gen_server library of Erlang/OTP. We believe that we can transparently
widen the set of safe programs captured by these tools by using k-mc instead of
synchronous multiparty compatibility.

Desai et al. [25] propose a communicating automata-based approach to ver-
ify safety properties of programs written in P [26]. Their approach is based
on exploring a subset of the (possibly infinite) set of reachable configurations
by prioritising certain transitions in order to minimise the size of the queues.
Although the approach may not always terminate, they show that it is sound
and complete wrt. reachability of error configurations. For instance the system
in Figure 8, adapted from [25, Section 9], shows a system for which their ap-
proach does not terminate. Note that this system is not existentially bounded
and therefore it is not k-mc for any k. It is however trivially existentially stable
bounded since no stable configuration is reachable except for the initial one. An
interesting area of future work is to investigate similar priority-based executions
of csa systems in order to check the k-mc property more efficiently.

D’Osualdo et al. [28] verify safety properties of Erlang programs by infer-
ring a model which abstracts away from message ordering in mailboxes. Their
model is based on vector addition systems, for which the reachability problem
is decidable. It would be interesting to adapt their approach to infer (mail-
box) communicating automata from Erlang programs. Several approaches rely
on sequentialization of concurrent programs [4,13,14,29,44,72], sometimes using
bounded executions. For instance, Bouajjani and Emmi [13] verify programs that
(asynchronously) send tasks to each other by considering executions bounded
by the number of times a sequence of tasks visits the same process. Bakst et
al. [4] address the verification of an actor-oriented language (modelled on Erlang
and Cloud Haskell) using canonical sequentializations, which over-approximate
a program. They show that properties such as deadlock-freedom can be checked
efficiently. Their approach requires the program to validate several structural
properties, one of which, symmetric non-determinism, is reminiscent of receive
directedness as it requires every receive action to only receive messages from a
single process (or a set of processes running the same code). It would be interest-
ing to relate symmetric non-determinism and directedness more precisely, and
consider systems of csa which consist of several instances of some automaton.

26 Julien Lange and Nobuko Yoshida

8 Conclusions

We have studied communicating session automata via a new condition called
k-exhaustivity. The k-exhaustivity condition is the basis for a new notion of
multiparty compatibility, k-mc, which captures asynchronous interactions while
guaranteeing the two requirements of previous definitions, i.e., for any k-mc

systems all sent messages can be received and no participant can get permanently
stuck. We have shown that k-exhaustive systems are fully characterised by local
bound-agnosticity, i.e., when each automaton behaves equivalently for any bound
greater then or equal to k, see Theorem 3. This is relevant for asynchronous
message passing programming languages where the possibility of having infinitely
many orphan messages is undesirable, in particular in languages such as Go and
Rust which require channels to be bounded. We have used the definition of k-mc

to formally study the relationship between multiparty compatibility for session
types with other classes of communicating automata: existentially bounded [33,
47] and synchronisable [15]. We have shown that k-mc with k “ 1 is sufficient to
capture several examples from the literature, some of which cannot be verified
by previous synchronous multiparty compatibility definitions from [8,24,51]. We
have developed a partial order reduction technique to improve the scalability of
our approach and demonstrated its performance in an experimental evaluation.

For future work, we plan to support a larger class of communicating automata
while preserving our soundness results, Theorem 1 in particular. We believe that
it is possible to support mixed states and states which do not satisfy ibi as long as
their outgoing transitions are independent (i.e., if they commute). Additionally,
to make k-mc checking more efficient, we will elaborate heuristics to find optimal
bounds and off-load the verification of k-mc to an off-the-shelf model checker.

References

1. P. A. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas. Optimal dynamic partial
order reduction. In POPL 2014, pages 373–384, 2014.

2. P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems with
unbounded, lossy FIFO channels. In CAV 1998, pages 305–318, 1998.

3. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In
(LICS 1993), pages 160–170, 1993.

4. A. Bakst, K. von Gleissenthall, R. G. Kici, and R. Jhala. Verifying distributed
programs via canonical sequentialization. PACMPL, 1(OOPSLA):110:1–110:27,
2017.

5. S. Basu and T. Bultan. Automated choreography repair. In FASE 2016, pages
13–30, 2016.

6. S. Basu, T. Bultan, and M. Ouederni. Deciding choreography realizability. In
POPL 2012, pages 191–202, 2012.

7. L. Bocchi, T. Chen, R. Demangeon, K. Honda, and N. Yoshida. Monitoring net-
works through multiparty session types. Theor. Comput. Sci., 669:33–58, 2017.

8. L. Bocchi, J. Lange, and N. Yoshida. Meeting deadlines together. In CONCUR
2015, pages 283–296, 2015.

Verifying Asynchronous Interactions via Communicating Session Automata 27

9. L. Bocchi, W. Yang, and N. Yoshida. Timed multiparty session types. In CONCUR
2014, pages 419–434, 2014.

10. B. Bollig. Logic for communicating automata with parameterized topology. In
CSL-LICS 2014, pages 18:1–18:10, 2014.

11. B. Bollig, D. Kuske, and I. Meinecke. Propositional dynamic logic for message-
passing systems. Logical Methods in Computer Science, 6(3), 2010.

12. B. Bollig and M. Leucker. Message-passing automata are expressively equivalent
to EMSO logic. Theor. Comput. Sci., 358(2-3):150–172, 2006.

13. A. Bouajjani and M. Emmi. Bounded phase analysis of message-passing programs.
STTT, 16(2):127–146, 2014.

14. A. Bouajjani, M. Emmi, and G. Parlato. On sequentializing concurrent programs.
In SAS 2011, pages 129–145, 2011.

15. A. Bouajjani, C. Enea, K. Ji, and S. Qadeer. On the completeness of verifying
message passing programs under bounded asynchrony. In CAV 2018, pages 372–
391, 2018.

16. D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983.

17. G. Cécé and A. Finkel. Verification of programs with half-duplex communication.
Inf. Comput., 202(2):166–190, 2005.

18. G. Cécé, A. Finkel, and S. P. Iyer. Unreliable channels are easier to verify than
perfect channels. Inf. Comput., 124(1):20–31, 1996.

19. L. Clemente, F. Herbreteau, and G. Sutre. Decidable topologies for communicating
automata with FIFO and bag channels. In CONCUR 2014, pages 281–296, 2014.

20. M. Coppo, M. Dezani-Ciancaglini, L. Padovani, and N. Yoshida. A Gentle Intro-
duction to Multiparty Asynchronous Session Types. In 15th International School
on Formal Methods for the Design of Computer, Communication and Software
Systems: Multicore Programming, volume 9104 of LNCS, pages 146–178. Springer,
2015.

21. P. Darondeau, B. Genest, P. S. Thiagarajan, and S. Yang. Quasi-static scheduling
of communicating tasks. Inf. Comput., 208(10):1154–1168, 2010.

22. R. Demangeon, K. Honda, R. Hu, R. Neykova, and N. Yoshida. Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and Python. Formal Methods in System Design, 46(3):197–225, 2015.

23. P. Deniélou and N. Yoshida. Multiparty session types meet communicating au-
tomata. In ESOP 2012, pages 194–213, 2012.

24. P. Deniélou and N. Yoshida. Multiparty compatibility in communicating automata:
Characterisation and synthesis of global session types. In ICALP 2013, pages 174–
186, 2013.

25. A. Desai, P. Garg, and P. Madhusudan. Natural proofs for asynchronous programs
using almost-synchronous reductions. In OOPSLA 2014, pages 709–725, 2014.

26. A. Desai, V. Gupta, E. K. Jackson, S. Qadeer, S. K. Rajamani, and D. Zufferey.
P: safe asynchronous event-driven programming. In PLDI 2013, pages 321–332,
2013.

27. H. DeYoung and F. Pfenning. Substructural proofs as automata. In APLAS 2016,
pages 3–22, 2016.

28. E. D’Osualdo, J. Kochems, and C. L. Ong. Automatic verification of erlang-style
concurrency. In SAS 2013, pages 454–476, 2013.

29. M. Emmi, A. Lal, and S. Qadeer. Asynchronous programs with prioritized task-
buffers. In SIGSOFT/FSE 2012, page 48, 2012.

30. A. Finkel and É. Lozes. Synchronizability of communicating finite state machines
is not decidable. In ICALP 2017, pages 122:1–122:14, 2017.

28 Julien Lange and Nobuko Yoshida

31. A. Finkel and P. McKenzie. Verifying identical communicating processes is unde-
cidable. Theor. Comput. Sci., 174(1-2):217–230, 1997.

32. B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model check-
ing algorithms for existentially bounded communicating automata. Inf. Comput.,
204(6):920–956, 2006.

33. B. Genest, D. Kuske, and A. Muscholl. On communicating automata with bounded
channels. Fundam. Inform., 80(1-3):147–167, 2007.

34. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in
Computer Science. Springer, 1996.

35. M. G. Gouda, E. G. Manning, and Y. Yu. On the progress of communications
between two finite state machines. Information and Control, 63(3):200–216, 1984.

36. M. Güdemann, G. Salaün, and M. Ouederni. Counterexample guided synthesis of
monitors for realizability enforcement. In ATVA 2012, pages 238–253, 2012.

37. S. Hallé and T. Bultan. Realizability analysis for message-based interactions using
shared-state projections. In SIGSOFT 2010, pages 27–36, 2010.

38. A. Heußner, T. L. Gall, and G. Sutre. McScM: A general framework for the
verification of communicating machines. In TACAS 2012, pages 478–484, 2012.

39. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type dis-
cipline for structured communication-based programming. In ESOP 1998, pages
122–138, 1998.

40. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In POPL 2008, pages 273–284, 2008.

41. R. Hu. Distributed programming using java apis generated from session types. In
Behavioural Types: from Theory to Tools. River Publishers, June 2017.

42. R. Hu and N. Yoshida. Hybrid session verification through endpoint API genera-
tion. In FASE 2016, pages 401–418, 2016.

43. R. Hu and N. Yoshida. Explicit connection actions in multiparty session types. In
FASE 2017, pages 116–133, 2017.

44. O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato. Bounded model
checking of multi-threaded C programs via lazy sequentialization. In CAV 2014,
pages 585–602, 2014.

45. KMC tool, 2018. https://bitbucket.org/julien-lange/k-checking.
46. D. Kouzapas, O. Dardha, R. Perera, and S. J. Gay. Typechecking protocols with

Mungo and StMungo. In PPDP 2016, pages 146–159, 2016.
47. D. Kuske and A. Muscholl. Communicating automata. Available at

http://eiche.theoinf.tu-ilmenau.de/kuske/Submitted/cfm-final.pdf, 2014.
48. S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of con-

current queue systems. In TACAS 2008, pages 299–314, 2008.
49. J. Lange, N. Ng, B. Toninho, and N. Yoshida. Fencing off Go: liveness and safety

for channel-based programming. In POPL 2017, pages 748–761, 2017.
50. J. Lange, N. Ng, B. Toninho, and N. Yoshida. A static verification framework for

message passing in Go using behavioural types. In ICSE 2018. ACM, 2018.
51. J. Lange, E. Tuosto, and N. Yoshida. From communicating machines to graphical

choreographies. In POPL 2015, pages 221–232, 2015.
52. J. Lange, E. Tuosto, and N. Yoshida. A tool for choreography-based analysis

of message-passing software. In Behavioural Types: from Theory to Tools. River
Publishers, June 2017.

53. J. Lange and N. Yoshida. Characteristic formulae for session types. In TACAS
2016, pages 833–850, 2016.

https://bitbucket.org/julien-lange/k-checking
http://eiche.theoinf.tu-ilmenau.de/kuske/Submitted/cfm-final.pdf

Verifying Asynchronous Interactions via Communicating Session Automata 29

54. J. Lange and N. Yoshida. On the undecidability of asynchronous session subtyping.
In FOSSACS 2017, pages 441–457, 2017.

55. S. Lindley and J. G. Morris. Embedding session types in Haskell. In Haskell 2016,
pages 133–145, 2016.

56. M. Lohrey and A. Muscholl. Bounded MSC communication. Inf. Comput.,
189(2):160–181, 2004.

57. A. Muscholl. Analysis of communicating automata. In LATA 2010, pages 50–57,
2010.

58. R. Neykova, L. Bocchi, and N. Yoshida. Timed Runtime Monitoring for Multiparty
Conversations. FAOC, pages 1–34, 2017.

59. R. Neykova, R. Hu, N. Yoshida, and F. Abdeljallal. A Session Type Provider:
Compile-time API Generation for Distributed Protocols with Interaction Refine-
ments in F7. In CC 2018. ACM, 2018.

60. R. Neykova and N. Yoshida. Let It Recover: Multiparty Protocol-Induced Recov-
ery. In CC 2017, pages 98–108. ACM, 2017.

61. R. Neykova and N. Yoshida. Multiparty Session Actors. LMCS, 13:1–30, 2017.
62. N. Ng and N. Yoshida. Static deadlock detection for concurrent go by global session

graph synthesis. In CC 2016, pages 174–184, 2016.
63. N. Ng, N. Yoshida, and K. Honda. Multiparty session C: safe parallel programming

with message optimisation. In TOOLS 2012, pages 202–218, 2012.
64. Ocean Observatories Initiative. www.oceanobservatories.org.
65. OMG. Business Process Model and Notation, 2018.

https://www.omg.org/spec/BPMN/2.0/.
66. D. A. Orchard and N. Yoshida. Effects as sessions, sessions as effects. In POPL

2016, pages 568–581, 2016.
67. L. Padovani. A simple library implementation of binary sessions. J. Funct. Pro-

gram., 27:e4, 2017.
68. D. A. Peled. Ten years of partial order reduction. In CAV 1998, pages 17–28, 1998.
69. W. Peng and S. Purushothaman. Analysis of a class of communicating finite state

machines. Acta Inf., 29(6/7):499–522, 1992.
70. R. Perera, J. Lange, and S. J. Gay. Multiparty compatibility for concurrent objects.

In PLACES 2016, pages 73–82, 2016.
71. Introduction to protocol engineering. Available at

http://cs.uccs.edu/~cs522/pe/pe.htm, 2006.
72. S. Qadeer and D. Wu. KISS: keep it simple and sequential. In PLDI 2004, pages

14–24, 2004.
73. G. Salaün, L. Bordeaux, and M. Schaerf. Describing and reasoning on web services

using process algebra. IJBPIM, 1(2):116–128, 2006.
74. A. Scalas, O. Dardha, R. Hu, and N. Yoshida. A linear decomposition of multiparty

sessions for safe distributed programming. In ECOOP 2017, pages 24:1–24:31,
2017.

75. A. Scalas and N. Yoshida. Lightweight session programming in scala. In ECOOP
2016, pages 21:1–21:28, 2016.

76. Scribble Project homepage, 2018. www.scribble.org.
77. K. C. Sivaramakrishnan, M. Qudeisat, L. Ziarek, K. Nagaraj, and P. Eugster.

Efficient sessions. Sci. Comput. Program., 78(2):147–167, 2013.
78. K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its

typing system. In PARLE 1994, pages 398–413, 1994.
79. R. Taylor, E. Tuosto, N. Walkinshaw, and J. Derrick. Choreography-based analysis

of distributed message passing programs. In PDP 2016, pages 512–519, 2016.

www.oceanobservatories.org
https://www.omg.org/spec/BPMN/2.0/
http://cs.uccs.edu/~cs522/pe/pe.htm
www.scribble.org

30 Julien Lange and Nobuko Yoshida

80. D. M. Yellin and R. E. Strom. Protocol specifications and component adaptors.
ACM Trans. Program. Lang. Syst., 19(2):292–333, 1997.

Verifying Asynchronous Interactions via Communicating Session Automata 31

A Overview of the proofs of Lemma 1 and Theorem 5

The properties k-obi and ibi, and k-exhaustivity together guarantee that any
choice made by an automaton is not constrained nor influenced by the channel
bounds. The proof that k-mc guarantees safety for such systems crucially relies
on this. The independence of choice wrt. the channel bounds for these csa allows
us to construct sets of executions that include all possible individual choices. We
characterise this form of closure with the definition below, which is crucial for
the further developments of this section.

Definition 25 (k-Closed). Given a system S, Ψ Ď A˚, and s P RSkpSq, we
say that Ψ is k-closed for s, if the following two conditions hold:

1. @φ P Ψ : Ds1 P RSkpSq : s
φ
ÝÑk s

1

2. @φ0 ¨ pq!a ¨φ1 P Ψ s.t. s
φ0

ÝÑ pq;wq and @pqp, ℓ, q
1
pq P δp there is φ0 ¨φ2 ¨ ℓ ¨φ3 P

Ψ with φ2 ¨φ3 P A
˚ and p R φ2.

In other words, Ψ is k-closed for s if (1) all executions in Ψ , starting from s,
lead to a configuration in RSkpSq and (2) whenever an automaton p fires a send
action in an execution in Ψ , then all possible choices that p can make are also
represented in Ψ .

Example 15. Consider the 1-mc system pMp,Mqq below.

p : 0 1 2 3

pq!a

pq!b
qp?c

qp?d

q : 0 1 2 3

qp!c

qp!d
pq?a

pq?b

The sets tǫu and tqp!c, qp!d , ǫu are both 1-closed for s0 “ p0, 0; ǫ, ǫq. Instead, the
set tqp!c, ǫu is not 1-closed for s0 since there is a branching in participant q that
is not represented.

Lemma 8 follows from the facts that (i) S is (reduced) k-obi and (ii) S is
k-exhaustive, i.e., all send actions are eventually enabled within the k-bounded
executions.

Lemma 8. Let S be reduced k-obi and k-exhaustive. For all s P RSkpSq, if

s
pq!a
ÝÝÑ and Ψ “ tφ | s

φ
ÝÑk

pq!a
ÝÝÑk ^p R φu, then Ψ ‰ H is k-closed for s.

Note that if pq!a is the only action enabled at s, then Ψ “ tǫu. In general,
we do not have ǫ P Ψ , as shown in the example below.

Example 16. Consider the 1-mc system pMp,Mqq below.

p :
0 1 2

pq!a pq!b q :
0 1 2

pq?a pq?b

Pose s “ p1, 0; a, ǫq, we have that the set tφ | s
φ
ÝÑ1

pq!b
ÝÝÑ1 ^p R φu “ tpq?au is

1-closed for s. Indeed, for the action pq!b to be fired in a 1-bounded execution,
message a must be consumed first.

32 Julien Lange and Nobuko Yoshida

Lemma 9 below states that if there is a k-closed set of executions for a
configuration s, we can construct another k-closed set for any successor of s.

Lemma 9. Let S be a k-ibi system, s, s1 P RSkpSq and Ψ Ď A˚ such that

Ψ is k-closed for s, s
ℓ
ÝÑk s

1, and Ψ̂ “ Ψ̂1 Y Ψ̂2, where

Ψ̂1 “ tφ | φ P Ψ ^ subj pℓq R φu and Ψ̂2 “ tφ1 ¨φ2 | φ1 ¨ ℓ ¨φ2 P Ψ ^ subj pℓq R φ1u

Then the following holds:

1. The set Ψ̂ is k-closed for s1

2. For all ψ P Ψ̂ , there is φ P Ψ such that either:
– ψ P Ψ̂1, ψ “ φ, subj pℓq R ψ, and there are t, t1 P RSkpSq such that

s
ψ
ÝÑk t, s

1 ψ
ÝÑk t

1, and t
ℓ
ÝÑk t

1, and φ ¨ ℓ— ℓ ¨ψ; or

– ψ P Ψ̂2, there is t P RSkpSq such that s
φ
ÝÑk t, s

1 ψ
ÝÑk t, and φ— ℓ ¨ψ.

3. Ψ “ H ðñ Ψ̂ “ H.

Figure 9 (left and middle) illustrates the construction of the executions in Ψ̂ .
The crucial part of the proof is to show that Ψ̂ is indeed k-closed, this is done by
case analysis on the structure of an arbitrary execution in Ψ̂ . The assumption
that S is a k-ibi system is key here: we can rely on the fact that if ℓ is a receive
action, then it is the unique receive action that subj pℓq can execute from s.

Next, Lemma 10 states that given the existence of a k-closed set of executions,
one can find an alternative but equivalent path to a common configuration. We
show the result below by induction on n, using Lemma 9.

Lemma 10. Let S be a reduced k-obi and k-ibi system, then for all s1, . . . , sn P

RSkpSq, such that s1
ℓ1ÝÑk s2 ¨ ¨ ¨ sn´1

ℓn´1

ÝÝÝÑk sn (with n ą 1). If there is H ‰
Ψ Ď A˚ such that Ψ is k-closed for s1, then there is φ1 P Ψ and ψ, φn P A

˚ such

that s1
φ1ÝÑk t1

ψ
ÝÑk tn and sn

φnÝÝÑk tn, for some t1, tn P RSkpSq with |ψ| ă n

and φ1 ¨ψ— ℓ1 ¨ ¨ ¨ ℓn ¨φn.

Figure 9 (right) illustrates Lemma 10. A key consequence of Lemma 8 and

Lemma 10 is that if s1 P RSkpSq, then we have s1
φ1

ÝÑk t1
ℓ1ÝÑk, i.e., t1 P RSkpSq;

we use this result to show Lemma 11.

Lemma 11. Let S be reduced k-obi, k`1-ibi, and k-exhaustive, then for all

s P RSkpSq and s1 P RSk`1pSq such that s
φ
ÝÑk`1 s

1, there is t P RSkpSq and

ψ, ψ1 P A˚, such that s
ψ
ÝÑk t, s

1 ψ1

ÝÑk`1 t, and ψ—φ ¨ψ1.

Lemma 11 states that if S is (reduced) k-obi, k`1-ibi, and k-exhaustive
then there is a path from any k`1-reachable configuration to a k-reachable
configuration. The proof is by induction on the length of φ using Lemma 8 as a
starting assumption, then applying Lemma 10 repeatedly.

Remark 5. The assumption that S is k`1-ibi is required, see Figure 2 for an
example that is 1-obi, 1-ibi, and 1-exhaustive but for which the conclusions of
Lemma 11 do not hold.

Verifying Asynchronous Interactions via Communicating Session Automata 33

s s1

t t1

ℓ

ℓ

ψ “ φ ψ “ φ

s s1

.

.

t

ψ“φ1 ¨φ2

φ “φ1 ¨ ℓ ¨φ2

ℓφ1

φ1ℓ

φ2

s1 s2 sn´1 sn

t1 tn

ℓ1 ℓn´1

φ1 φn

ψ

Fig. 9. Illustrations for Lemma 9 and Lemma 10.

Since the ibi property is undecidable in general, we have introduced the
k-cibi and k-sibi properties as sound approximations of ibi, for k-obi and k-
exhaustive systems. We give a brief overview of the proof of Lemma 12 (part
of which implies Lemma 2). The proof that k-cibi implies ibi is similar, see
Lemma 30 for the key result.

Lemma 12. If S is reduced k-obi, k-sibi, and k-exhaustive, then it is k`1-sibi.

To show Lemma 12, we show that for any system that is reduced k-obi,
k-sibi, and k-exhaustive, the k`1-ibi property holds, i.e., Lemma 26. The proof
of Lemma 26 is by induction on the length of an execution from s0. Then we
show the final result by contradiction, using Lemma 11 to find an execution that
leads to a k-reachable configuration.

B Additional examples

B.1 Example for Section 3 — Behaviour of sending states

The system S “ pMp,Mq,Mr,Msq (without the shaded part) is 1–mc but not
k-safe (for any k ą 1). Note that Mp and Mr are not send directed. The system
with the shaded part is 1–mc and safe.

p :

0

1

2

6

4

3

5

pq!y

pq!vps!x

pr!u

ps!xpq!v

pr!w

q :

0

1

2

3

rq?z

pq?y

pq?v

r :

0

1

2

6

4

3

5

rs!b

rq!z

pr?u
pr?w

rs!a

rs!a

pr?u
pr?w

rq!z

s :

0

1

2

3

ps?x

rs?b

rs?a

Mp Mq Mr Ms

Interestingly, this example shows that Lemma 8 does not hold for non-k-obi

communicating automata. Take s “ pq;wq such that q “ p1, 0, 0, 0q and wpq “ y

and the other channels are empty, then the set tφ | s
φ
ÝÑ1

pq!v
ÝÝÑ1 ^p R φu is not

34 Julien Lange and Nobuko Yoshida

1-closed for s. In particular, while participant r can execute rs!b ¨rp!z before p

fires pq!v , r cannot fire rs!b ¨ rs!a (since the queue rs is full after firing rs!b).
This violates the definition of 1-closure since r can potentially send both a and
z from state 1.

B.2 Example for Section 3 — k-sibi vs. k-cibi

We illustrate the difference between the k-sibi and k-cibi properties with the
system below. It is adapted from the running example of [51] where we have
removed mixed states (choosing one interleaving for each outgoing transition).
We refer to it as the 4 Player game in Table 2.

Ma :

ab!bwin

ac!cwin ba?sig

ca?msg

ca?msg
ba?sigad!free

Mb :
ab?bwin

bc!close

cb?blose ba!sig

Mc :
cd!busy

ac?cwin

bc?close

cb!blose

ca!msg
Md :

cd?busy

ad?free

This system is k-ibi for all k (and thus ibi): it is never the case that Mb (resp.
Mc) can choose between consuming bwin or blose (resp. cwin or close). It is not
k-sibi (for any k) because of the cyclic nature of the protocol (both choices are
available at each iteration). However, this system is k-cibi because, Ma need to
receive acknowledgements from both Mb and Mc before starting a new iteration
of the game; hence there is a dependency between, e.g., ab?bwin and cb!blose.

B.3 Example for Section 4 — (reduced) k-obi

The example below is reduced k-obi for k ě 2, but not k-obi for any k ě 1.
TS 1pSq includes a state where the queue pq contains one message a and Mp

is back and its initial state. At this point, pr!b is fireable, but pq!a is not. In
RTS2p2q, there is only one state from which p fires its send actions, both of
which are enabled, hence the system is 2-obi.

p :
pq!a

pr!b
q :

pq?a
r : pr?b

Verifying Asynchronous Interactions via Communicating Session Automata 35

B.4 Example for Section 4 — Ordered list

We illustrate the motivation to sort the list generated by partitionp_q, see Def-
inition 15, with the system below.

p : 0

1

pq!a

q :
0

s : 0

1

sr!x sr!y

r :
0

If we were to build the RTSkpSq of this system without sorting the list returned
by partitionps0q. We may obtain partitionps0q “ tsr!x , sr!yu ¨tpq!au, which pro-
duces 4 transitions (and 5 states). Instead, if the list is sorted by ascending cardi-
nality, we have partitionps0q “ tpq!au ¨tsr!x , sr!yu, which gives us an RTSkpSq
with 3 transitions (and 4 states).

Remark 6. Note that even though sorting sets of transitions by cardinality gives
better performance in general, it does guarantee to find the smallest RTSkpSq.

B.5 Example for Section 3.2 — Local bound-agnosticity

We illustrate the reason for using projections which preserve ǫ-transitions, i.e.,
πǫppTS kpSqq, to characterise k-exhaustive systems, instead of projections which
determinise the automata, cf. [51]. Consider the system S below.

s : sr!x sr!y

ps?a

p : ps!a

ps!a

r :
sr?x sr?y

The traditional projections (πppTSkpSqq) and projections (πǫppTSkpSqq) for
k P t1, 2u are given below (up to (weak) bisimulation).

πppTS 1pSqq “ πppTS 2pSqq “ ps!a

ps!a

πǫppTS 1pSqq “
ps!a

ǫ ǫ

ps!a

πǫppTS 2pSqq “
ps!a

ǫ ǫ

ps!aps!a

Observe that we have πppTS 1pSqq„πppTS 2pSqq, but not

πǫppTS 1pSqq« π
ǫ
ppTS 2pSqq

Indeed, the system above is not 1-mc, but is 2-mc.

36 Julien Lange and Nobuko Yoshida

B.6 Example for Sections 7 and 8 — Mailbox communicating
automata

Consider the system pMp,Mr,Mqq below, with a mailbox semantics, i.e., par-
ticipant r has one input queue to which both participants p and q can send
messages.

p : r!a

r!a

r : ?a

?a

q : r!a

r!a

If this system executes with bound k ď 3, one participant (either p or q) will be
prevented to send at least one message. This namely implies that the send action
of participant may become disabled after being enabled. This is problematic for
the current partial order reduction algorithm and for the notion of k-closed sets
used to prove our main results.

C Proofs for Section 2

Proposition 1. (1) If S is send directed, then S is k-obi for all k P Ną0. (2) If
S is receive directed, then S is ibi (and k-ibi for all k P Ną0).

Proof. Immediate since each directed (csa) automaton has access to at most
one channel from each state.

Lemma 13. Let S be a system and φ P A˚. If s0
φ
ÝÑk, then φ is a valid execu-

tion.

Proof. By induction on the length of φ. The result follows trivially for φ “
ǫ. Assume it holds for φ and let us show that is also holds for φ ¨ ℓ. Assume
chanpℓq “ pq. By induction hypothesis, for each prefix ψ of φ, we have that
π?
srpψq is a prefix of π!

srpψq for any channel sr P C. Hence, for each prefix ψ of
φ ¨ ℓ we have that π?

srpψq is a prefix of π!
srpψq for any channel sr ‰ pq P C. If

ℓ “ pq!a, the result still holds since π!
srpψq is longer or equal. The interesting

case is when ℓ “ pq?a. Pose π!
pqpφq “ π?

pqpφq ¨w (there is such w by induction
hypothesis). Assume by contradiction that φ ¨ pq?a is not a valid word. Then,
there is no w1 P Σ˚ such that π!

pqpφq “ π!
pqpφ ¨ pq?aq “ π?

pqpφ ¨ pq?aq ¨w
1. which

implies that either w “ b ¨w2 or w “ ǫ (b ‰ a). This contradicts the fact that

s0
φ
ÝÑk s

pq?a
ÝÝÝÑk since the channel pq in s is either empty or starts with b.

Lemma 14. Let S be a system. If s0
ψ0

ÝÝÑ s, s
φ
ÝÑ t, and s

φ1

ÝÑ t1 such that φ—φ1,
then (1) t “ t1 and (2) φ0 ¨φ≎φ0 ¨φ

1.

Proof. Item (1) follows from the fact that the automata are deterministic hence,
they all terminate in the same state, and the queues are consumed uniformly in
both executions. Item (2) follows from the fact that both executions are valid,
by Lemma 13.

Verifying Asynchronous Interactions via Communicating Session Automata 37

D Proofs for Section 3

Theorem 2. The problems of checking the k-obi, k-ibi, k-sibi, k-safety, and
k-exhaustivity properties are all decidable and pspace-complete (with k P Ną0

given in unary). The problem of checking the k-cibi property is decidable.

Proof. We first observe that decidability follows straightforwardly since for any
finite k, both RSkpSq and ÝÑk are finite. We follow the proof of [11, Theorem
6.3]. Let n be the maximum of t|Qp| | p P Pu, then there are at most n|P| local
states in S.
(k-exhaustivity) We check whether S is not k-exhaustive, i.e., for each sending
state qp and send action from qp, we check whether there is a reachable config-
uration from which this send action cannot be fired. Hence, we need to search
RSkpSq, which has an exponential number of states (wrt. k). Following [11, The-
orem 6.3], each configuration s P RSkpSq may be encoded in space

|P| logn` |C|k log |Σ|

We also need one bit to remember whether we are looking for qp or whether
we are looking for the matching action. We need to store at most |P|n|C||Σ|k

configurations, hence the problem can be decided in polynomial space when k is
given in unary.

Next, we show that the problem is pspace-hard. From [33, Proposition 5.5],
we know that checking existentially stable k-boundedness for a system with the
stable property is pspace-complete. By Theorem 8, this problem can be reduced
to checking whether the system is k-exhaustive, which implies that checking k-
exhaustivity must be pspace-hard.
(k-obi) For each sending state qp, we check whether there is a reachable config-
uration from which not all send actions can be fired, and thus we reason similarly
to the k-exhaustivity case. Next, we show that checking k-obi is pspace-hard.
For this we adapt the construction from [15, Theorem 10] which reduces the
problem of checking if the product of a set of finite state automata has an empty
language to checking 1-synchronisability. We use the same construction as theirs
(which is 1-obi) but instead of adding states and transitions to ensure that the
system breaks 1-synchronisability when each automata is in a final state, we add
states and transitions that violate 1-obi (using a construction like the one in
Example 6).
(k-ibi) For each non-directed receiving state qp, we check whether there is a
reachable configuration from which more than one receive action can be fired,
and thus we reason similarly as for k-exhaustivity. Showing that k-ibi is pspace-
hard is similar to the k-obi case.
(k-sibi) There are two components of this property, one is equivalent to k-ibi,
the other requires to guarantee that no matching send action is fired from an
already enabled receive state. Hence, for each non-directed receiving state qp, we
check whether there is a reachable configuration from which one receive action
of p is enabled, followed by a send action that matches another receive. We can
proceed as in the case for k-exhaustivity with additional space to remember

38 Julien Lange and Nobuko Yoshida

whether we are looking for the receiving state or for a matching send action.
Showing that k-sibi pspace-hard is similar to the k-obi case.
(k-safety) For eventual reception, we proceed as in k-sibi for each receiving
state and element of the alphabet (check if such a configuration is reachable,
then we search for a matching receive). For progress, we proceed as in k-sibi for
each receiving state qp (check if such a configuration is reachable, then we search
for a move by p). Showing that checking k-safety pspace-hard is similar to the
k-obi case.

Lemma 15. Let S s.t. s P RSkpSq and Ψ Ď A˚ such that Ψ is k-closed for s,
then Ψ is k`1-closed for s.

Proof. The result follows from Definition 25, since ÝÑkĎÝÑk`1.

Lemma 8. Let S be reduced k-obi and k-exhaustive. For all s P RSkpSq, if

s
pq!a
ÝÝÑ and Ψ “ tφ | s

φ
ÝÑk

pq!a
ÝÝÑk ^p R φu, then Ψ ‰ H is k-closed for s.

Proof. The non-emptiness of Ψ follows easily from the assumption that S is
k-exhaustive (Definition 9). We have to show the following two conditions hold:

(1) @φ P Ψ : Ds1 P RSkpSq : s
φ
ÝÑk s

1, which follows trivially from the definition
of Ψ .
(2) For all φ0 ¨ sr!b ¨φ1 P Ψ such that s

φ0

ÝÑ pq;wq and for all pqs, ℓ, q
1
sq P δs there

is φ0 ¨ ℓ ¨φ2 P Ψ . For this part, take φ0 ¨ sr!b ¨φ1 P Ψ such that s
φ0

ÝÑ s1 “ pq;wq
(with s ‰ p by definition of Ψ). By definition of Ψ , we have s1 “ pq;wq P RSkpSq.

Since S is k-exhaustive, for each pqs, st!c, q
1
sq P δs there is ψ s.t. we obtain

the following situation (where each arrow indicates a k-bounded execution):

s1

t t1

sr!b

st!c

ψ
with s R ψ

There are two cases:

– If p R ψ, we have that the local state of p in configurations s, s1 and t is

the same. Hence, by k-exhaustivity: t1
ψ1

ÝÑk
pq!a
ÝÝÑk with p R ψ. Therefore,

φ0 ¨ψ ¨st!c ¨ψ
1 P Ψ as required.

– If there is no φ such that p R ψ, then there must be a dependency chain in ψ
that prevents st!c to be fired without p making a move. Since s R ψ, we must
have some st?d in ψ such that st?d depends on an action by p. The smallest
such chain is of the form: pt!x ¨ pt?x ¨ st?y. Without loss of generality, pose
ψ “ pt!x ¨ pt?x ¨ st?y (we reason similarly with a longer chain).

Take φ3 s.t. s0
φ3ÝÑk s, since S is reduced k-obi and k-exhaustive, there are

t2 and ψ0 such that s0
ψ0

ÝÝãk t
2, and φ4 s.t. t1

φ4

ÝÑk t
2, with

ψ0—φ3 ¨φ0 ¨ pt!x ¨ pt?x ¨ st?y ¨st!c ¨φ4

Verifying Asynchronous Interactions via Communicating Session Automata 39

by Lemma 39 (2). Hence, due to the dependency chain within ψ, we must
have:

ψ0 “ ψ1 ¨ pt!x ¨ψ2 ¨ pt?x ¨ψ3 ¨ st?y ¨ψ4 ¨ st!c ¨ψ5

with s R ψ2 ¨ψ3 ¨ψ4. There are three cases:
‚ Either sr!b is k-enabled immediately after ψ1, in which case we have a

contradiction with the fact that S is reduced k-obi,
‚ sr!b is k-enabled strictly after ψ1 and strictly before st!c, then we have

a contradiction with the fact that S is reduced k-obi, or
‚ sr!b is not k-enabled along ψ0, which is also a contradiction with the

fact that S is reduced k-obi.

Given φ “ ℓ1 ¨ ¨ ¨ ℓn P A
˚, we write subj pφq for the set

Ť

1ďiďntsubj pℓiqu.

Lemma 16. If s
φ
ÝÑk t and s

ψ
ÝÑk t

1 and subj pφq X subj pψq “ H, then there is

s1 such that t
ψ
ÝÑk s

1 and t1
φ
ÝÑk s

1.

Proof. Straightforward: the executions are independent from one another.

Lemma 9. Let S be a k-ibi system, s, s1 P RSkpSq and Ψ Ď A˚ such that

Ψ is k-closed for s, s
ℓ
ÝÑk s

1, and Ψ̂ “ Ψ̂1 Y Ψ̂2, where

Ψ̂1 “ tφ | φ P Ψ ^ subj pℓq R φu and Ψ̂2 “ tφ1 ¨φ2 | φ1 ¨ ℓ ¨φ2 P Ψ ^ subj pℓq R φ1u

Then the following holds:

1. The set Ψ̂ is k-closed for s1

2. For all ψ P Ψ̂ , there is φ P Ψ such that either:
– ψ P Ψ̂1, ψ “ φ, subj pℓq R ψ, and there are t, t1 P RSkpSq such that

s
ψ
ÝÑk t, s

1 ψ
ÝÑk t

1, and t
ℓ
ÝÑk t

1, and φ ¨ ℓ— ℓ ¨ψ; or

– ψ P Ψ̂2, there is t P RSkpSq such that s
φ
ÝÑk t, s

1 ψ
ÝÑk t, and φ— ℓ ¨ψ.

3. Ψ “ H ðñ Ψ̂ “ H.

Proof. Let us pose subj pℓq “ p.
(1) We first observe that Ψ̂ validates condition (1) of Definition 25, i.e., @φ P

Ψ̂ : Ds2 P RSkpSq : s
1 φ
ÝÑk s

2, by definition of Ψ̂ . We then show that Ψ̂ validates
the second condition of k-closure. There are two cases depending on whether the
execution is in Ψ̂1 or Ψ̂2.

1. Take φ “ φ0 ¨ sr!a ¨φ1 P Ψ̂1, then by definition of Ψ̂1, we have p ‰ s and

φ P Ψ . Hence, posing s
φ0ÝÑ pq;wq, we have that for all pqs, ℓ

1, q1
sq P δs there

is φ0 ¨φ1 ¨ ℓ
1 ¨φ2 P Ψ , with subj pℓ1q R φ1, since Ψ is k-closed by assumption.

(a) If p R φ2, then φ0 ¨φ1 ¨ ℓ
1 ¨φ2 P Ψ̂1, as required.

(b) If p P φ2, then there are two cases depending on whether ℓ is a send or
a receive action.
– If ℓ “ qp?a, then we must have φ2 “ φ3 ¨qp?a ¨φ4 with p R φ3,

since S is k-ibi (only one receive action can be enabled at p). Thus
φ0 ¨φ1 ¨ ℓ

1 ¨φ3 ¨φ4 P Ψ̂2, as required.

40 Julien Lange and Nobuko Yoshida

– If ℓ “ pq!a, then we must have φ2 “ φ3 ¨ pt!b ¨φ4 with p R φ3. Since
Ψ is k-closed, we also have φ0 ¨φ1 ¨ ℓ

1 ¨φ3 ¨φ4 ¨ pq!a ¨φ5 P Ψ ,
for some φ4, φ5 s.t. p R φ4. Thus, φ0 ¨φ1 ¨ ℓ

1 ¨φ3 ¨φ4 ¨φ5 P Ψ̂2, as re-
quired.

2. Take φ “ φ0 ¨ sr!a ¨φ1 P Ψ̂2. There are two cases:

(a) If φ0 “ φ2 ¨φ3 and φ2 ¨ ℓ ¨φ3 ¨ sr!a ¨φ1 P Ψ , then posing s
φ2 ¨ ℓ ¨φ3ÝÝÝÝÝÑ pq;wq,

we have that for all pqs, ℓ
1, q1

sq P δs there is φ2 ¨ ℓ ¨φ3 ¨φ5 ¨ ℓ
1 ¨φ4 P Ψ (for

some φ4 and φ5 s.t. s R φ5) since Ψ is k-closed by assumption. Thus,
φ2 ¨φ3 ¨φ5 ¨ ℓ

1 ¨φ4 P Ψ̂2, as required.
(b) If φ1 “ φ2 ¨φ3 and φ0 ¨ sr!a ¨φ2 ¨ ℓ ¨φ3 P Ψ , then p R φ0 ¨ sr!a ¨φ2 (hence

p ‰ s) and, posing s
φ0

ÝÑ pq;wq, we have that for all pqs, ℓ
1, q1

sq P δs there
is φ0 ¨φ8 ¨ ℓ

1 ¨φ4 P Ψ (for some φ4 and φ8 s.t. s R φ8) since Ψ is k-closed
by assumption.
– if p R φ4, then φ0 ¨φ8 ¨ ℓ

1 ¨φ4 P Ψ̂1, as required.
– if p P φ4, there are two cases depending on whether ℓ is a receive or

send action.
‚ if ℓ is a receive action, then we must have φ4 “ φ5 ¨ ℓ ¨φ6 with
p R φ5, thus φ0 ¨φ8 ¨ ℓ

1 ¨φ5 ¨φ6 P Ψ̂2, as required, since S is k-ibi

(only one receive action can be enabled at p)
‚ if ℓ is a send action, pose ℓ “ pq!c, then we must have φ4 “
φ5 ¨ pt!b ¨φ6 with p R φ5. Since Ψ is k-closed, we must also have
φ0 ¨ ℓ

1 ¨φ5 ¨φ9 ¨ pq!c ¨φ7 P Ψ (for some φ7 and φ9 s.t. p R φ9).
Thus, φ0 ¨ ℓ

1 ¨φ5 ¨φ9 ¨φ7 P Ψ̂2, as required.

(2) Take ψ P Ψ̂ , by definition of Ψ̂ , there are two cases:

1. If ψ P Ψ̂1, then ψ “ φ P Ψ and since subj pℓq R ψ, s
ψ
ÝÑk t

ℓ
ÝÑk t

1 and s1 ψ
ÝÑk t

1

by Lemma 16. In picture, we have

s s1

t t1

ℓ

ℓ
ψ “ φ ψ “ φ

Finally, we have φ ¨ ℓ— ℓ ¨ψ since subj pℓq R ψ.
2. If ψ P Ψ̂2, then there is φ “ φ0 ¨ ℓ ¨φ1 P Ψ s.t. ψ “ φ0 ¨φ1 and subj pℓq R φ0.

Thus, by Lemma 16 we have s
φ0 ¨ ℓ ¨φ1ÝÝÝÝÝÑk t and s

ℓ
ÝÑk s

1 φ0 ¨φ1ÝÝÝÝÑk t, i.e.,

s s1

.

.

t

ℓ

φ0

φ0
ℓ

φ1

Verifying Asynchronous Interactions via Communicating Session Automata 41

Finally, we have φ0 ¨ ℓ ¨φ1— ℓ ¨φ0 ¨φ1 since subj pℓq R φ0.

(3) The (ñ) direction is trivial from the definition of Ψ̂ . Let us show that
Ψ̂ “ H ùñ Ψ “ H by contradiction. Assume Ψ̂ “ H and Ψ ‰ H. This implies
that for all φ P Ψ : p P φ. Pose φ “ φ0 ¨ ℓ̂ ¨φ1, with p R φ0, ℓ ‰ ℓ̂.

– If ℓ is a receive action, then ℓ̂ is also a receive action (p R φ0), thus ℓ ‰ ℓ̂

contradicts the assumptions that s
ℓ
ÝÑk and p R φ0.

– If ℓ is a send action, then ℓ̂ is also a send action (p R φ0), thus it is a
contradiction with the fact that Ψ is k-closed for s.

Lemma 10. Let S be a reduced k-obi and k-ibi system, then for all s1, . . . , sn P

RSkpSq, such that s1
ℓ1ÝÑk s2 ¨ ¨ ¨ sn´1

ℓn´1

ÝÝÝÑk sn (with n ą 1). If there is H ‰
Ψ Ď A˚ such that Ψ is k-closed for s1, then there is φ1 P Ψ and ψ, φn P A

˚ such

that s1
φ1ÝÑk t1

ψ
ÝÑk tn and sn

φnÝÝÑk tn, for some t1, tn P RSkpSq with |ψ| ă n

and φ1 ¨ψ— ℓ1 ¨ ¨ ¨ ℓn ¨φn.

Proof. By replicated application of Lemma 9 (parts 1 and 3), for all 1 ď i ď n,
there is H ‰ Ψi Ď A˚ such that Ψi is k-closed for si. In addition, by Lemma 9
(part 2), for all 1 ď i ă n, and for all φi`1 P Ψi`1, there is φi P Ψi such that
either

– si`1

φi`1

ÝÝÝÑk ti`1, and si
φi
ÝÑk ti, with ti “ ti`1, or

– si`1

φi`1

ÝÝÝÑk ti`1, si
φiÝÑk ti, and ti

ℓiÝÑk ti`1.

The rest of the proof is by induction on n.
(Base case) If n “ 2, then the result follows directly by instantiating Lemma 9
with s1 “ s, sn “ s1, and ℓ1 “ ℓ, in particular, we have ψ “ ℓ1 or ψ “ ǫ (hence
|ψ| ă n).

(Inductive case) Assume the result holds for n “ i (i.e., φ1 ¨ψ— ℓ1 ¨ ¨ ¨ ℓi´1 ¨φi)
and let us show that it holds for n “ i`1. We have the following situation:

si si`1

ti ti`1

ℓi

ψ1
φi φi`1

s1

t1

ℓ1 ¨ ¨ ¨ ℓi´1

ψ
φ1

By Lemma 9, we have either

1. ti “ ti`1, ψ
1 “ ǫ, and φi ¨ ǫ— ℓi ¨φi`1.

2. ψ1 “ ℓi, φi “ φi`1 and φi ¨ ℓi— ℓi ¨φi.

We have to show that

φ1 ¨ψ ¨ψ
1— ℓ1 ¨ ¨ ¨ ℓi´1 ¨ ℓi ¨φi`1

42 Julien Lange and Nobuko Yoshida

– Assume case (1) holds.

φ1 ¨ψ — ℓ1 ¨ ¨ ¨ ℓi´1 ¨ φi by induction hypothesis
— ℓ1 ¨ ¨ ¨ ℓi´1 ¨ φ

1 ¨ ℓi ¨φ
2 posing φi “ φ1 ¨ ℓi ¨φ

2 with subj pℓiq R φ
1

— ℓ1 ¨ ¨ ¨ ℓi´1 ¨ ℓi ¨φ
1 ¨φ2 since subj pℓiq R φ

1

— ℓ1 ¨ ¨ ¨ ℓi´1 ¨ ℓi ¨φi`1 by Lemma 9

Finally, since ψ1 “ ǫ in this case, we have φ1 ¨ψ ¨ψ
1 “ φ1 ¨ψ, hence

φ1 ¨ψ— ℓ1 ¨ ¨ ¨ ℓi´1 ¨ ℓi ¨φi`1

as required.

– Assume case (2) holds.

φ1 ¨ψ — ℓ1 ¨ ¨ ¨ ℓi´1 ¨ φi by induction hypothesis
φ1 ¨ψ ¨ ℓi — ℓ1 ¨ ¨ ¨ ℓi´1 ¨ φi ¨ ℓi by Lemma 14

— ℓ1 ¨ ¨ ¨ ℓi´1 ¨ ℓi ¨φi by case (2)
— ℓ1 ¨ ¨ ¨ ℓi´1 ¨ ℓi ¨φi`1 by case (2)

φ1 ¨ψ ¨ψ
1 — ℓ1 ¨ ¨ ¨ ℓi´1 ¨ ℓi ¨φi`1 ψ1 “ ℓi

In both cases, we have |ψ ¨ψ1| ď i since |ψ| ă i by induction hypothesis and
φ “ ǫ (resp. ψ1 “ ℓi) by case (1) (resp. case (2)).

Lemma 11. Let S be reduced k-obi, k`1-ibi, and k-exhaustive, then for all

s P RSkpSq and s1 P RSk`1pSq such that s
φ
ÝÑk`1 s

1, there is t P RSkpSq and

ψ, ψ1 P A˚, such that s
ψ
ÝÑk t, s

1 ψ1

ÝÑk`1 t, and ψ—φ ¨ψ1.

Proof. We show the result by induction on the length of φ.

(Base case) If φ “ ǫ, then the result holds trivially with s “ s1 “ t “ t1 P
RSkpSq.
(Inductive case) Assume that for all s P RSkpSq and s1 P RSk`1pSq such that

s
φ
ÝÑk`1 s

1, with |φ| ă n, there is t P RSkpSq and ψ, ψ1 P A˚, such that s
ψ
ÝÑk t,

s1 ψ1

ÝÑk`1 t, and ψ—φ ¨ψ1.

Take s P RSkpSq and s1 P RSk`1pSq such that s
φ
ÝÑk`1 s

1, with φ “ ℓ1 ¨ ¨ ¨ ℓn
(i.e., |φ| “ nq, assuming that

s “ s1
ℓ1ÝÑk`1 s2

ℓ2ÝÑk`1 ¨ ¨ ¨
ℓnÝÑk`1 sn`1 “ s1

There are two cases depending on the direction of ℓ1.

1. If ℓ1 “ pq?a, then s2 P RSkpSq since s1 P RSkpSq. Thus, by induction

hypothesis, there is t P RSkpSq and ψ, ψ1 P A˚, such that s2
ψ
ÝÑk t and

s1 ψ1

ÝÑk`1 t and ψ— ℓ2 ¨ ¨ ¨ ℓn ¨ψ
1. Hence, ℓ1 ¨ψ— ℓ1 ¨ ℓ2 ¨ ¨ ¨ ℓn ¨ψ

1, as required

since s1
ℓ1ÝÑk s2.

Verifying Asynchronous Interactions via Communicating Session Automata 43

2. If ℓ1 “ pq!a, then by Lemma 8, the set Ψ1 “ tψ | s
ψ
ÝÑk

pq!a
ÝÝÑk ^p R φu is

non-empty and Ψ1 is k-closed for s.
Therefore, by Lemma 15, Ψ1 is k`1-closed for s and by Lemma 9, the set

Ψ2 “ tφ | φ P Ψ1 ^ subj pℓ1q R φuYtφ1 ¨φ2 | φ1 ¨ ℓ1 ¨φ2 P Ψ1 ^ subj pℓ1q R φ1u

is k`1-closed for s2 and Ψ1 “ Ψ2 “ tφ | φ P Ψ1 ^ subj pℓ1q R φu by definition
of Ψ1.
Hence, since S is k`1-bi by assumption, we can apply Lemma 10 and obtain
that there is ψ2 P Ψ2 and φ̂1, ψn`1 P A

˚ such that

s2
ψ2

ÝÝÑk`1 t2
φ̂1

ÝÑk`1 tn`1 and s1 “ sn`1

ψn`1

ÝÝÝÑk tn`1

for some t2, tn`1 P RSk`1pSq with |φ̂| ă n and

ψ2 ¨ φ̂
1— ℓ2 ¨ ¨ ¨ ℓn ¨ψn`1

We have t2
φ̂1

ÝÑk`1 tn`1, with |φ̂1| ă n, with t2 P RSkpSq, thus by induction

hypothesis, there is t P RSkpSq such that tn`1

ψ̂1

ÝÑk`1 t, s2
ψ̂
ÝÑk t and

ψ̂— φ̂1 ¨ ψ̂1, as pictured below (where red parts are in ÝÑk and the rest in
ÝÑk`1).

s2 sn`1 “ s1

t2 tn`1

t

ℓ2 ¨ ¨ ¨ ℓn

φ̂1

ψ2 ψn`1

s “ s1

t1

ℓ1

ψ1 “ ψ2

ℓ1

ψ̂
ψ̂1

We have to show that

ψ1 ¨ ℓ1 ¨ ψ̂— ℓ1 ¨ ¨ ¨ ℓn ¨ψn`1 ¨ ψ̂
1

By Lemma 10,
ψ1 ¨ φ̂

1— ℓ2 ¨ ¨ ¨ ℓn ¨ψn`1

Prefixing each execution with ℓ1, we have:

ℓ1 ¨ψ1 ¨ φ̂
1— ℓ1 ¨ ℓ2 ¨ ¨ ¨ ℓn ¨ψn`1

and since subj pℓ1q R ψ1, we have:

ψ1 ¨ ℓ1 ¨ φ̂
1— ℓ1 ¨ ℓ2 ¨ ¨ ¨ ℓn ¨ψn`1

Adding ψ̂1 on each side of the equation, we obtain:

ψ1 ¨ ℓ1 ¨ φ̂
1 ¨ ψ̂1— ℓ1 ¨ ℓ2 ¨ ¨ ¨ ℓn ¨ψn`1 ¨ ψ̂

1

44 Julien Lange and Nobuko Yoshida

By induction hypothesis, we have ψ̂— φ̂1 ¨ ψ̂1. Hence, we obtain

ψ1 ¨ ℓ1 ¨ ψ̂— ℓ1 ¨ ¨ ¨ ℓn ¨ψn`1 ¨ ψ̂
1

as required.

Lemma 17. If S is reduced k-obi, k`1-ibi, and k-exhaustive, then for all s P
RSk`1pSq, there is t P RSkpSq such that s ÝÑ˚

k`1
t.

Proof. Direct consequence of Lemma 11.

Lemma 18. If S is reduced k-obi, pk`1q-ibi, and k-exhaustive, then it is re-
duced pk`1q-obi and pk`1q-exhaustive.

Proof. (pk`1q-obi) By contradiction, assume S is reduced k-obi but not re-
duced pk`1q-obi. Then, there must be s “ pq;wq P RTSk`1pSqzRTSkpSq such

that there is p P P , s
pr!b
ÝÝÑk`1, pqp, pr!b, q

1
pq P δp, and ps

pt!c
ÝÝÑkq. By Lemma 17

and Lemma 39 (2), there is t1 P RTSkpSq such that s
φ
Ýãk`1 t

1. There are two
cases:

1. If pt?x R ψ1, then we have t1
pr!b
ÝÝÑk`1, and pt1

pt!c
ÝÝÑk`1q, hence pt1

pt!c
ÝÝÑkq.

– If t1
pr!b
ÝÝÑk we have a contradiction with the fact that S is reduced k-obi.

– If pt1
pr!b
ÝÝÑkq then both queues are full at t1. Since S is k-exhaustive,

both actions are enabled along a k-bounded execution from t1. However,
one action must be enabled before the other, in any execution, contra-
dicting the fact that S is reduced k-obi.

2. If pt?x P ψ1, t
1 pr!b
ÝÝÑk`1, and t1

pt!c
ÝÝÑk`1. Then the queue pt must still be

holding k messages at t1. Hence, pt1
pt!c
ÝÝÑkq and we reason as above to reach

a contradiction with the fact that S is reduced k-obi.

(pk`1q-exhaustive) By contradiction, assume S is k-exhaustive, but not pk`1q-
exhaustive. Then, there must be s “ pq;wq P RSk`1zRSkpSq such that there is
p P P , with qp a sending state and the following does not hold:

@pqp, pq!a, q
1
pq P δp : Dφ P A

˚ : s
φ
ÝÑk`1

pq!a
ÝÝÑk`1 and p R φ (1)

By Lemma 17, there is s1 P RSkpSq such that s
φ
ÝÑk`1 s

1.

1. If p R φ, then s1 φ1

ÝÑk
pq!a
ÝÝÑk (by k-mc and s1 P RSkpSq), i.e., a contradiction.

2. If p P φ. There are two cases:
(a) φ “ φ1 ¨ pq!a ¨φ2 with p R φ1, hence pq!a can be fired from s, a contra-

diction with the assumption that (D) above does not hold.
(b) φ “ φ1 ¨ pt!b ¨φ2 with p R φ1 and a ‰ b. This implies that

s
φ1ÝÑk`1

pq!a
ÝÝÑk`1 since S is bi

which contradicts the assumption that (D) does not hold.

Verifying Asynchronous Interactions via Communicating Session Automata 45

Lemma 19. If S is (reduced) k-obi, ibi, and k-exhaustive, then for all s P

RSpSq such that s0
φ
ÝÑ s, there is t P RSkpSq and ψ, φ1 P A˚, such that s0

ψ
ÝÑk t,

s
φ1

ÝÑ t, and ψ—φ ¨φ1.

Proof. We first note that in this case ≎ and — coincide since we only consider
executions starting from s0, see Lemma 13; thus we show that ψ≎φ ¨ φ1.

From Lemma 18, we know that S is n-exhaustive (for any n ě k). Hence,
we obtain the result by repeated applications of Lemma 11 (with s “ s0) using
the fact that ≎ is a congruence.

Lemma 1. If S is k-obi, ibi, and k-mc, then it is k`1-obi and pk`1q-mc.

Proof. By Lemma 20 and Lemma 3.

Lemma 20. If S is reduced k-obi, ibi, and k-mc then it is k`1-obi and pk`1q-
mc.

Proof. Assume by contradiction, that S is k-mc, but not pk`1q-safe. Then, there
must be s “ pq;wq P RSk`1zRSkpSq such that at least one of the following
conditions does not hold.

1. For all pq P C, if wpq “ a ¨w1, then s ÝÑ˚
k`1

pq?a
ÝÝÝÑk`1.

2. For all p P P , if qp is a receiving state, then s ÝÑ˚
k`1

qp?a
ÝÝÝÑk`1 for some q P P

and a P Σ.

Note that S is pk`1q-obi and k`1-exhaustive by Lemma 18.

By Lemma 17, there is s1 P RSkpSq such that s
φ
ÝÑk`1 s

1.
(1) Assume that Item 1 above does not hold, i.e., we have wpq “ a ¨w1 for some
pq P C, but each path φ from s does not contain pq?a. Observe that for the
first occurrence of pq?b in φ, we must have a “ b (since wpq “ a ¨w1), but we
cannot have pq?a P φ by contradiction hypothesis. This implies that we have
w1
pq “ a ¨w1 ¨w2 in s1, and since S is k-mc and s1 P RSkpSq, we must have

s1 ÝÑk
˚ pq?a
ÝÝÝÑk. Thus, we have s

φ
ÝÑk`1 s

1 ÝÑk
˚ pq?a
ÝÝÝÑk, a contradiction.

(2) Assume that Item 2 above does not hold, i.e., there is p P P such that
qp is a receiving state but for each path φ from s, φ does not allow p to fire
a (receive) action. Hence, by contradiction hypothesis we have qp?a R φ for
any a and q. Hence p is still in state qq in configuration s1. Since S is k-mc and

s1 P RSkpSq, we must have s1 ÝÑk
˚ qp?a
ÝÝÝÑk. Thus, we have s

φ
ÝÑk`1 s

1 ÝÑk
˚ qp?a
ÝÝÝÑk,

a contradiction.

Theorem 1. If S is k-obi, ibi, and k-mc, then it is safe.

Proof. By Theorem 5 and Lemma 3.

Theorem 5. If S is reduced k-obi, ibi, and k-mc, then it is safe.

46 Julien Lange and Nobuko Yoshida

Proof. Direct consequence of Lemma 20.

Lemma 21. Let S be (reduced) k-obi and ibi. If S is safe and k-exhaustive,
then it is k-mc.

Proof. We show that S is k-safe. By contradiction, assume there is S safe, k-
exhaustive, and not k-safe. Since S is not k-safe, then there is s “ pq;wq P
RSkpSq such that at least one of the two cases below hold.

1. wpq “ a ¨w and there is no execution φ such that s
φ
ÝÑk

pq?a
ÝÝÝÑk. By safety,

there is ψ and n ą k such that s
ψ
ÝÑn s

1 pq?a
ÝÝÝÑn s

2. By Lemma 11, we can
extend ψ ¨ pq?a such that there is an equivalent k-bounded execution, which
contradicts this case.

2. qp is a receiving state and there is no execution φ such that s
φ
ÝÑk

qp?a
ÝÝÝÑk;

then we reason similarly as above using Lemma 11.

Lemma 22. If S is k-sibi, then it is k-ibi.

Proof. Straightforward.

Lemma 23. If S is k-cibi, then it is k-ibi.

Proof. Straightforward.

Lemma 24. If s $ ℓ ăφ ℓ
1, then there is a subsequence ψ of φ such that

– s $ ℓ ă ℓ1 and ψ “ ǫ, or
– ψ “ ℓ1 ¨ ¨ ¨ ℓn (n ě 1), s $ ℓ ă ℓ1, @1 ď i ă n : s $ ℓi ă ℓi`1, s $ ℓn ă ℓ1.

Proof. By induction on the length of φ.
(Base case) If s $ ℓ ăǫ ℓ

1, then we must have s $ ℓ ă ℓ1 by definition.
(Inductive case) Assume the result holds for φ and let us show it holds for
ℓ2 ¨φ. There are two cases:

– If s $ ℓ ăφ ℓ1 and we have the result by induction hypothesis, since any
subsequence of φ is a subsequence of ℓ2 ¨φ.

– If s $ ℓ ă ℓ2 and s $ ℓ2
ăφ ℓ1. Then by induction hypothesis there is a

subsequence ℓ1 ¨ ¨ ¨ ℓn of φ such that ℓ2
ă ℓ1 ă ¨ ¨ ¨ ℓn ă ℓ1 hence we have the

result with the subsequence ℓ2 ¨ ℓ1 ¨ ¨ ¨ ℓn.

Lemma 25. Let S be a system, s P RS pSq, and φ “ φ1 ¨ ℓ ¨φ2 ¨ ℓ
1 ¨φ3 such that

s0
φ
ÝÑ and s $ ℓ ăφ2

ℓ1, with s0
φ1ÝÑ s. Then for all valid ψ such that ψ≎φ, there

are ψ1, ψ2, ψ3, and t P RSpSq such that

1. ψ “ ψ1 ¨ ℓ ¨ψ2 ¨ ℓ
1 ¨ψ3,

2. π
subj pℓqpψ1q “ π

subj pℓqpφ1q

3. π
subj pℓ1qpψ1 ¨ ℓ ¨ψ2q “ π

subjpℓ1qpφ1 ¨ ℓ ¨φ2q, and

4. t $ ℓ ăψ2
ℓ1, with s0

ψ1ÝÝÑ t.

Verifying Asynchronous Interactions via Communicating Session Automata 47

Proof. By Lemma 24, there is a subsequence ℓ1 ¨ ¨ ¨ ℓn of φ2 such that

s $ ℓ “ ℓ0 ă ℓ1 and @1 ď i ă n : s $ ℓi ă ℓi`1 and s $ ℓn ă ℓ1 “ ℓn`1

Take the shortest such subsequence (smallest n), we show that the relative order
between each pair of actions must be preserved. By definition, for each s $ ℓj ă

ℓj`1 (0 ď j ď n` 1) to hold there are two cases:

– If subj pℓjq “ subj pℓj`1q, then it is not possible to swap ℓj and ℓj`1 while
preserving ≎-equivalence.

– If subj pℓjq ‰ subj pℓj`1q, then chanpℓjq “ chanpℓj`1q, and there are two
cases depending on whether the queue chanpℓjq is empty when ℓj is fired.
‚ If the queue is empty, then we cannot swap ℓj and ℓj`1 without invali-

dating the execution since they are matching send and receive actions.
‚ If the queue is not empty, since wchanpℓjq “ ǫ (at s) there must be another

send action ℓl with l ă j such that chanpℓlq “ chanpℓj`1q. Therefore, we
have s $ ℓl ă ℓj`1, and thus ℓ1 ¨ ¨ ¨ ℓl ¨ ¨ ¨ ℓj`1 ¨ ¨ ¨ ℓn is a (striclty) shorter
subsequence of φ2 which is dependency chain, a contradiction.

Since each pair of actions cannot be swapped without invalidating the sequence
or break ≎-equivalence, we must conclude that any ψ has the required form and
that the t $ ℓ ăψ2

ℓ1 property holds since ψ2 must contain the subsequence
ℓ1 ¨ ¨ ¨ ℓn.

Lemma 26. If S is reduced k-obi, k-sibi and k-exhaustive, then it is k`1-ibi.

Proof. From Lemma 27 and 28.

Lemma 27. If S is k-sibi, then it is k-cibi.

Proof. By contradiction, take s “ pq;wq P RSkpSq such that the condition for
k-cibi do not hold while the condition for k-sibi does. Then, we must have

s
qp?a
ÝÝÝÑk s1 and s1 φ

ÝÑk
sp!b
ÝÝÑk such that ps $ qp?a ăφ sp!bq. However, the

existence of an execution s1 φ
ÝÑk

sp!b
ÝÝÑk contradicts Definition 12.

Lemma 28. If S is reduced k-obi, k-cibi and k-exhaustive, then it is k`1-ibi.

Proof. Take s P RSkpSq and s1 P RSk`1pSq such that s
φ
ÝÑk`1 s1. We show

by induction on the length of φ that s1 φ1

ÝÑk`1 t1 for some t1 P RSkpSq, and

there is ψ such that s
ψ
ÝÑk t1 with ψ—φ ¨φ1, and for all prefix φ1

0 of φ1, if

s1 φ1

0ÝÑk`1 s
2 “ pq;wq, s2 validates the following condition, for all p P P :

s2 qp?a
ÝÝÝÑk`1 t ùñ @ℓ P A : s

ℓ
ÝÑk`1 ^ subj pℓq “ p ùñ ℓ “ qp?a

(Base case) Assume φ “ ℓ. If ℓ “ pq?a, then s1 P RSkpSq, and we have result
since S is k-cibi (via Lemma 23), with s1 “ t1. If ℓ “ pq!a, then since S is

k-exhaustive, we have s
ψ
ÝÑk t

pq!a
ÝÝÑk t

1, with p R ψ. Hence, we have s1 ψ
ÝÑk`1 t

1.

48 Julien Lange and Nobuko Yoshida

We show that for all prefix ψ0 of ψ, if s1 ψ0ÝÝÑk`1 t
2, then t2 validates the k`1-ibi

condition. We have the following situation:

s s1

s2

t

t2

t1

ℓ “ pq!a

ψ0ψ0

ℓ

ℓ

ψ1ψ1

Assume by contradiction that t2
sr?b
ÝÝÝÑk`1 and t2

tr?c
ÝÝÝÑk`1. If these two tran-

sitions are also enabled at s2, we have a contradiction with the fact that S is
k-cibi. Hence, we have that either participant r has made a move through ℓ,
hence p “ r, an additional receive action in r becomes enabled because sr “ pq,
or tr “ pq (i.e., the queue sr (resp. tr) is empty in s and s2).

– If p “ r, then if we pose ψ0 “ ψ, we have t1
sr?b
ÝÝÝÑk`1 and t1

tr?c
ÝÝÝÑk`1, which

contradicts the fact that S is k-cibi.

– If sr “ pq (i.e., sr?b “ pq?a), then we have s2 tq?c
ÝÝÝÑk v for some v. Since S

is k-exhaustive, we also have v
ψ2

ÝÝÑk
pq!a
ÝÝÑk with p R ψ2. By k-cibi, we have

that for all such ψ2, we have s2 $ tq?c ăψ2
pq!a, which is a contradiction

with Lemma 25 since the two actions are swapped in k`1.
– The case tr “ pq is symmetric to the one above.

(Inductive case) Assume the result holds for φ and let us show it holds for
φ ¨ ℓ. Assume that we have the following situation, where the dashed edges need
to be shown to exist.

s s1 s2

t1 t2

φ ℓ

ψ φ1

with s, t1 P RSkpSq and s1, s2 P RSk`1pSq.
By induction hypothesis, all configurations between s1 and t1 and between s1

and s2 are k`1-ibi and k`1-obi (by Lemma 20), hence, we can use a similar

reasoning to that of Lemma 9 to show that either s2 φ1

ÝÑk`1 t
2 (with t1

ℓ
ÝÑk`1 t

2)

or s2 φ1

ÝÑk`1 t
1 (with t1 “ t2).

– If s2 φ1

ÝÑk`1 t
2 (with t1

ℓ
ÝÑk`1 t

2), then we proceed as in the base case with
s :“ t1 and s1 :“ t2.

Verifying Asynchronous Interactions via Communicating Session Automata 49

– If s2 φ1

ÝÑk`1 t
1 (with t1 “ t2), then we only have to show that all configu-

rations on φ1 validate the condition. Since there is an equivalent k-bounded
execution, any violation would contradict the hypothesis that S is k-cibi.

Lemma 12. If S is reduced k-obi, k-sibi, and k-exhaustive, then it is k`1-sibi.

Proof. We note that since S is reduced k-obi, k-sibi and k-exhaustive, we have
that S is k`1-ibi by Lemma 26. We show this result by contradiction, using
Lemma 26 and Lemma 11. Assume, by contradiction, that there is s P RSkpSq

and s1 “ pq;wq P RSk`1pSq such that s
φ
ÝÑk`1 s

1 with p P P s.t.

1. s1 qp?a
ÝÝÝÑk`1, and s1 sp?b

ÝÝÝÑk`1, or

2. s1 qp?a
ÝÝÝÑk`1, and Dpqp, sp?b, q

1
pq P δp : s ‰ q^ s ÝÑ˚

k`1

sp!b
ÝÝÑk`1

(1) follows from Lemma 26.

(2) Assume there is s1 such that s1 qp?a
ÝÝÝÑk`1, and Dpqp, sp?b, q

1
pq P δp : s ‰

q ^ s
φ1

ÝÑk`1

sp!b
ÝÝÑk`1 s

2. By Lemma 11, there is t P RSkpSq such that s
ψ
ÝÑk t

and s2 φ1

ÝÑk`1 t with ψ—φ ¨φ ¨ sp!b ¨φ2. Hence both qp?a and sp!b appear in ψ
which contradicts the fact that S is k-sibi.

Lemma 29. If S is k-obi, k-sibi and k-exhaustive, then it is ibi.

Proof. Direct consequence of Lemma 12, Lemma 18, and Lemma 3.

Lemma 30. If S is reduced k-obi, k-cibi, and k-exhaustive, then it is k`1-cibi.

Proof. We first note that since S is reduced k-obi, k-cibi and k-exhaustive, we
have that S is k`1-ibi by Lemma 28.

We show this result by contradiction, using Lemma 28 and Lemma 11. As-
sume, by contradiction, that there is s P RSkpSq and s1 “ pq;wq P RSk`1pSq

such that s
φ
ÝÑk`1 s

1 with p P P , pqp, sp?b, q
1
pq P δp and s ‰ q s.t.

1. s1 qp?a
ÝÝÝÑk`1, and s1 sp?b

ÝÝÝÑk`1, or

2. s1 qp?a
ÝÝÝÑk`1 s

2, s2 φ1

ÝÑk`1

sp!b
ÝÝÑk`1 t, and ps1 $ qp?a ăφ1 sp!bq

(1) is a contradiction with Lemma 28.

(2) By Lemma 11, there is t1 P RSkpSq such that s
ψ
ÝÑk t

1 and t
φ2

ÝÑk`1 t
1 with

ψ—φ ¨ qp?a ¨φ1 ¨ sp!b ¨φ2. There are two cases:

1. If ψ “ ψ1 ¨ sp!b ¨ψ2 ¨ qp?a ¨ψ3, with πppψ1 ¨ sp!b ¨ψ2q “ πppφq and πspψ1q “
πspφ ¨ qp?a ¨φ

1q, then we have a contradiction with the assumption that S is
k-cibi since p can receive b and a after having executed πppψ1 ¨ sp!b ¨ψ2q,
i.e., both messages are in the queue.

50 Julien Lange and Nobuko Yoshida

2. If ψ “ ψ1 ¨ qp?a ¨ψ2 ¨ sp!b ¨ψ3, with πppψ1q “ πppφq and πspψ1 ¨ qp?a ¨ψ2q “

πspφ ¨ qp?a ¨φ
1q, then we must have ŝ $ qp?a ăψ2

sp!b (assuming s0
ψ1ÝÝÑ ŝ)

since S is k-cibi. By Lemma 25, we must also have s1 $ qp?a ăφ1 sp!b, a
contradiction.

Lemma 31. If S is k-obi, k-cibi and k-exhaustive, then it is ibi.

Proof. By Lemma 18, Lemma 30, and Lemma 3.

Lemma 2. If S is k-obi, k-cibi (resp. k-sibi) and k-exhaustive, then it is ibi.

Proof. By Lemma 31 and Lemma 29.

D.1 Completeness characterisation of k-exhaustive systems

Lemma 32. If S is (reduced) k-obi, ibi, and k-exhaustive, then
@p P P : πǫppTS kpSqq« π

ǫ
ppTS k`1pSqq.

Proof. Pose TSkpSq “ pN, s0, ∆q and TSk`1pSq “ pN
1, s0, ∆

1q. Recall that we
have ∆ Ď ∆1 and N Ď N 1.

Assume by contradiction that pπǫppTSkpSqq« π
ǫ
ppTS k`1pSqqq for some p P

P . Then, there are s P N X N 1 and ℓ (with subj pℓq “ p) such that s
φ
ÝÑk`1

s1 ℓ
ÝÑk`1 s

2 with πppφq “ ǫ and

@φ1 P A : @s2 P RSkpSq : s
φ1

ÝÑk s
2 ^ πppφ

1q “ ǫ ùñ ps2 ℓ
ÝÑkq (2)

By Lemma 11, there is t P RSkpSq and ψ, ψ1 P A˚, such that s
ψ
ÝÑk t,

s2 ψ1

ÝÑk`1 t, ψ—φ ¨ ℓ ¨ψ
1. Hence, we have s

ψ
ÝÑk with πppψq “ ℓ ¨ψ2 for some ψ2

with contradicts (D.1).

Lemma 33. If S is such that Dk P Ną0 : @p P P : πǫppTS kpSqq«π
ǫ
ppTSk`1pSqq,

then S is k-exhaustive.

Proof. Assume by contradiction that there is some k P Ną0 such that

@p P P : πǫppTS kpSqq« π
ǫ
ppTSk`1pSqq (3)

and S is not k-exhaustive.
Pose TSkpSq “ pN, s0, ∆q and TSk`1pSq “ pN

1, s0, ∆
1q. Recall that we have

∆ Ď ∆1 and N Ď N 1.
Since S is not k-exhaustive, there are s “ pq;wq P RSkpSq and pq P C such

that s
pq!a
ÝÝÑ and

@φ P A˚ : @s1 P RSkpSq : s
φ
ÝÑk s

1 ^ p R φ ùñ ps1 pq!a
ÝÝÑkq (4)

Verifying Asynchronous Interactions via Communicating Session Automata 51

Since s P RSkpSq and ps
pq!a
ÝÝÑkq, we must have |wpq| “ k. Hence, s

pq!a
ÝÝÑk`1

and therefore
ps, pq!a, s2q P ∆1 for some s2 P N 1 (5)

By (D.1) and the fact that ∆ Ď ∆1 and N Ď N 1, we must have

πǫpppN, s,∆qq« π
ǫ
pppN

1, s,∆1qq

which is clearly a contradiction with (D.1) and (D.1).

Corollary 1. Let S be k-obi and ibi such that:
Dk P Ną0 : @p P P : πǫppTSkpSqq« π

ǫ
ppTSk`1pSqq.

Then, @n ě k : @p P P : πǫppTSkpSqq« π
ǫ
ppTSnpSqq.

Proof. Take S such that Dk : @p P P : πǫppTSkpSqq« π
ǫ
ppTSk`1pSqq. Then, by

Lemma 33, S is k-exhaustive. Since S is k-obi and pk`1q-ibi by assumption,
S is n-exhaustive for any n ě k, by Lemma 18. Hence, by Lemma 32, we have
@p P P : πǫppTSnpSqq« π

ǫ
ppTSn`1pSqq (for any n ě k).

Theorem 3. Let S be a system.

(1) If Dk P Ną0 : @p P P : πǫppTSkpSqq« π
ǫ
ppTSk`1pSqq, then S is k-exhaustive.

(2) If S is k-obi, ibi, and k-exhaustive, then @p P P :πǫppTSkpSqq«π
ǫ
ppTSk`1pSqq.

Proof. Part (1) follows from Lemma 33 and Part (2) follows from Lemma 32.

E Proofs for Section 4

Below, we say that a configuration s P RSkpSq is k-obi (resp. k-ibi) if it validates
the corresponding condition, e.g., if p can fire one send action from s, then all
its send actions are enabled. We say that S (resp. s) is k-bi when it is k-obi and
k-ibi.

Definition 26. We say that S is reduced k-chained input bound independent

(reduced k-cibi) if for all s “ pq;wq P RSkpSq and for all p P P, if s
qp?a
ÝÝÝãk s

1,

then @pqp, sp?b, q
1
pq P δp : s ‰ q ùñ ps

sp?b
ÝÝÝãkq ^ p@φ P A˚ : s1 φ

Ýãk
sp!b
ÝÝãk ùñ

s $ qp?a ăφ sp!bq.

Lemma 3. Let S be a system, if S is k-obi, then S is also reduced k-obi.

Proof. By contradiction. Notice that Definition 17 requires the same property
than Definition 6 at the configuration level. Take s P N̂ s.t. s violates the (re-
duced) k-obi condition, then s P RSkpSq, and s also violates k-obi.

Lemma 34. Let S be a system, if S is k-sibi, then S is also reduced k-sibi.

Proof. By contradiction. Take s P N̂ s.t. it violates the (reduced) k-sibi condi-
tion. Note that we s P RSkpSq. There are two cases:

52 Julien Lange and Nobuko Yoshida

– If there is p such that two receive actions are enabled for p, then they are
also enabled at s, a contradiction.

– If there is p such that one receive action is enabled for p, and there is ÝÑk-
path s.t. a conflicting send action is fired, then we have the situation in
TSkpSq, hence we have a contradiction.

Lemma 35. Let S be a system, if S is k-cibi, then S is also reduced k-cibi.

Proof. By contradiction. Take s P N̂ s.t. it violates the (reduced) k-cibi condi-
tion. Note that we s P RSkpSq. There are two cases:

– If there is p such that two receive actions are enabled for p, then they are
also enabled at s, a contradiction.

– If there is p such that one receive action is enabled for p, and there is
φ
ÝÑk-path

s.t. a conflicting send action is fired, and there is not dependency chain in φ,
then we have the situation in TSkpSq, hence we have a contradiction.

Lemma 36 states that any transition in a given set Li cannot be disabled by
a sequence of transitions not in Li.

Lemma 36. Let S be a system, s P RSkpSq s.t. s is k-bi, and L1 ¨ ¨ ¨Ln “
partitionpsq (with n ě 1). For all Li (with 1 ď i ď n) and for all φ “ ℓ1 ¨ ¨ ¨ ℓm

such that @1 ď j ď m : ℓj R Li, if s
φ
ÝÑk s

1, then ℓ P Li ùñ s1 ℓ
ÝÑk.

Proof. Take s P TSkpSq, L1 ¨Ln “ partitionpsq, Li (1 ď i ď n), and φ as defined

in the statement. Take any ℓ P Li and assume there is s1 such that s
φ
ÝÑk s

1.
We show the result by induction on the length of φ with the additional property
that subj pℓq R φ (note that this implies qp “ q1

p).

If φ “ ǫ, then s “ s1 and we have the result immediately (s
ℓ
ÝÑk by Defini-

tion 15).
Assume the result holds for φ and let us show that it holds for φ ¨ ℓ1 with

ℓ1 R Li. Assume we have s1 such that s
φ
ÝÑk s

1 ℓ1

ÝÑk s
2. We have to show that

s2 ℓ
ÝÑk, knowing that, by induction hypothesis, we have that s1 ℓ

ÝÑk and qp “ q1
p.

There are two cases:

– If subj pℓq “ subj pℓ1q, then since s is k-bi, we have s
ℓ1

ÝÑk, hence ℓ1 P Li, which
implies that the premises of this lemma do not hold: a contradiction.

– If subj pℓq ‰ subj pℓ1q, then we have qp “ q1
p “ q2

p and therefore q2
p

ℓ
ÝÑ.

‚ If ℓ “ pq!a. The only possibility for ℓ to be disabled in s2 and enabled
in s1 is if |w2

pq| ą k which is not possible since subj pℓ1q ‰ p.
‚ If ℓ “ qp?a. The only possibility for ℓ to be disabled in s2 and enabled

in s1 is if w2
pq “ ǫ which is not possible since subj pℓ1q ‰ p.

Lemma 37. Let S be a system, then for all s P RTSkpSq s.t. s is k-bi and

ℓ P A, if s
ℓ
ÝÑk, then there is φ P A˚ such that s

φ
Ýãk

ℓ
Ýãk with subj pℓq R φ.

Verifying Asynchronous Interactions via Communicating Session Automata 53

Proof. By assumption that s P RTSkpSq, s is visited by Algorithm 1.
If partitionpsq is invoked on s, the fact that subj pℓq R φ follows from Defini-

tion 15, while the fact that ℓ is eventually fired follows from the fact that the list
of sets of transition decreases at each iteration in Algorithm 1 and Lemma 36.

If partitionpsq is not invoked, then we have that E is not empty when s is
visited. Let t be a the last node visited before s such that partitionptq is invoked.
Pose L1 ¨ ¨ ¨Lm “ partitionptq and assume E “ Li ¨ ¨ ¨Lm (i ą 1) when s is
visited. If there is Lj such that ℓ P Lj (i ď j ď m), we have the result as above.
Otherwise, there are two cases

– If ℓ is independent from all the actions in Li ¨ ¨ ¨Lm, then ℓ will still be
enabled once the list is entirely processed, and therefore ℓ will be included
in the partition resulting from the next invocation of partitionp_q.

– If ℓ depends on some partition Lj, then we have a contradiction: either ℓ
is included in Lj (it must have been enabled at t) or the list returned by
partitionptq is not a partition.

Lemma 38. Let S be a system. If s0
φ1Ýãk s

ℓ
Ýãk s

1 φ2Ýãk t such that s is k-bi,

subj pℓq R φ2, chanpℓq R φ2, and s
ℓ1

ÝÑk with subj pℓq “ subj pℓ1q then s
ℓ1

Ýãk s
2 φ2

Ýãk

t1 for some s2 and t1.

Proof. Assume that E “ L1 ¨ ¨ ¨Lm when s is visited by Algorithm 1, then we

have ℓ, ℓ1 P L1 and s
ℓ1

Ýãk s
2 for some s2. When both s1 and s2 are visited next,

we have E “ L2 ¨ ¨ ¨Lm, hence it is easy to show they have the same behaviour
while E is not empty. Say sm (resp. s1

m) is the first state reachable from s1 (resp.
s2) when E is empty. Note that if ℓ is a receive action, then we must have ℓ “ ℓ1

since s is k-bi. Thus, the only differences between sm and s1
m are:

– the local state of subj pℓq
– the last message of channel chanpℓq

In terms of enabled transition, this means that for all ℓ̂ such that subj pℓ̂q ‰

subj pℓq and chanpℓ̂q ‰ chanpℓq is enabled at both sm and s1
m. Hence, posing

L1
1 ¨ ¨ ¨L

1
j “ partitionpsmq and L2

1 ¨ ¨ ¨L
2
l “ partitionps1

mq

and assuming that the position of the partition of subj pℓq is i (with 1 ď i ď j and
i ď l), it must be the case that all paths of length less than i and not involving
chanpℓq nor subj pℓq are the same from both sm and s1

m. Instead, any path longer
than i must use an action whose subject is subj pℓq at position i, hence does not
satisfy the premises of this lemma.

Lemma 39. Let S be a reduced k-bi system such that TSkpSq “ pN, s0, ∆q,
RTSkpSq “ pN̂ , s0, ∆̂q, and t0 P N X N̂ . The following holds:

1. If t0
φ
Ýãk s, then t0

φ
ÝÑk s, for some s.

54 Julien Lange and Nobuko Yoshida

2. If t0
φ
ÝÑk s, then there is ψ and φ1 such that t0

ψ
Ýãk t and s

φ1

ÝÑk t and
φ ¨φ1—ψ, for some t.

Proof. Item (1) follows trivially from Definition 15 and Algorithm 1, since only
transitions that exist in TSkpSq are copied in RTSkpSq.

We show Item (2) by induction on the length of φ. If φ “ ǫ, then we have
the result with φ1 “ ψ “ ǫ. Assume the result holds for φ and let us show
that it holds for φ ¨ ℓ. We have the following situation, where the dotted arrows
represent executions in RTSkpSq and t is in RTSkpSq.

4

t0 s s1

t

φ ℓ

ψ

φ1

Next, we show that there are t1, ŝ, s2, and ψ1 such that we have:

s s1

t

t1 s2

ŝ

ℓ

ℓ

ℓ

φ1

ψ1

φ1

ψ1

with φ1 ¨ψ1 ¨ ℓ— ℓ ¨φ1 ¨ψ1

We show this by induction on the length of φ1. If φ1 “ ǫ, then we have s “ t and
s1 “ ŝ. There are two cases:

– E “ rs when t is visited by Algorithm 1. In this case, the algorithm continues
with E “ L1 ¨ ¨ ¨Lm “ partitionpsq, and by Definition 15 there must be
1 ď i ď m such that ℓ P Li (since ℓ is enabled at t). Since ℓ is independent
with all ℓj such that 1 ď j ă i, we have:

s “ t
ℓ1¨¨¨ℓi´1

ÝÝÝÝÝãk t
1 ℓ
Ýãk s

2 and s “ t
ℓ
ÝÑk s

1 “ ŝ
ℓ1¨¨¨ℓi´1

ÝÝÝÝÝÑk s
2

We have the required result with ψ1 “ ℓ1 ¨ ¨ ¨ ℓi´1.
– E “ Li ¨ ¨ ¨Lm (i ą 0) when t is visited by Algorithm 1. Then we have two

cases:
‚ There is i ď j ď m such that ℓ P Lj and we reason as in the case where
E ““ rs (but starting at i instead of 1).

‚ If ℓ R
Ť

iďjďm Lj, then ℓ was not enabled when partitionpt̂q was invoked

(for t̂ a node visited on the path to s). Hence, ℓ is independent with

4 Note that executions in RTSkpSq are also in TSkpSq by Item (1).

Verifying Asynchronous Interactions via Communicating Session Automata 55

all actions in
Ť

iďjďm Lj and for all t2 such that t
ℓi¨¨¨ℓmÝÝÝÝãk t2 with

@i ď j ď m : ℓj P Lj , we have t2
ℓ
ÝÑk. Pose L1

1 ¨ ¨ ¨L
1
n “ partitionpt2q,

then we have that there is 1 ď j ď n such that ℓ P L1
j . Reasoning as

above, we have

s “ t
ℓi¨¨¨ℓmÝÝÝÝãk t

2 ℓ1

1
¨¨¨ℓ1

j´1

ÝÝÝÝÝãk t
1 ℓ
Ýãk s

2

and

s “ t
ℓ
ÝÑk s

1 ℓi¨¨¨ℓmÝÝÝÝÑk

ℓ1

1
¨¨¨ℓ1

j´1

ÝÝÝÝÝÑk s
2

We have the required result with ψ1 “ ℓi ¨ ¨ ¨ ℓm ¨ ℓ
1
1 ¨ ¨ ¨ ℓ

1
j´1.

Now, assuming the inner induction hypothesis holds, let us show the result for
φ1 ¨ ℓ1. We have the following situation, where the red parts are what is to be
shown:

s s1

ti

t

t1

ŝ

si

s2

ℓ

ℓ

φ1

ℓ1

φ1

ℓ1

ψ1ψ1

ℓ

ℓ

There are two cases.

– If subj pℓq ‰ subj pℓ1q, then the two actions commute from ti and we have the
result with ψ1 “ ǫ.

– If subj pℓq “ subj pℓ1q, then there are two cases:
‚ If ℓ “ ℓ1, then t “ si (by determinism) and we have the result with
φ1 “ ǫ.

‚ If ℓ ‰ ℓ1, then we must have ψ “ ψ1 ¨ ℓ
1 ¨ψ2 with subj pℓ1q R ψ2 (since

ψ—φ ¨φ1 ¨ ℓ by (outer) induction hypothesis). Since ℓ1 and ℓ have the

same subject, there is t̂ P RTSkpSq such that t0
ψ1ÝÝãk t̂ such that t̂

ℓ
Ýãk

and t̂
ℓ1

Ýãk by k-bi.

Thus, by Lemma 38, we also have t0
ψ1

ÝÝãk t̂
ℓ
Ýãk

ψ2

ÝÝãk t
2 for some t2. By

(outer) induction hypothesis, we have ψ “ ψ1 ¨ ℓ
1 ¨ψ2—φ ¨ φ

1 ¨ ℓ1 and since
subj pℓ1q R ψ2, we also have ψ1 ¨ψ2—φ ¨φ

1 and ψ1 ¨ ℓ ¨ψ2—φ ¨ φ
1 ¨ ℓ hence

si “ t2. Since t2 is in RTSkpSq, we have the required result with ψ1 “ ǫ.

Going back to the outer induction, we have to show that

ψ ¨ψ1 ¨ ℓ—φ ¨ ℓ ¨φ2

56 Julien Lange and Nobuko Yoshida

In other words, φ ¨ ℓ P TSkpSq can be extended with φ2 so that there is an
equivalent execution in RTSkpSq, i.e., ψ ¨ψ1 ¨ ℓ. By induction hypothesis, we have
ψ—φ ¨ φ1, hence we have

ψ ¨ψ1 ¨ ℓ—φ ¨φ1 ¨ψ1 ¨ ℓ

From the inner induction, we know that φ1 ¨ψ1 ¨ ℓ— ℓ ¨ψ2, hence, we have

φ ¨ φ1 ¨ψ1 ¨ ℓ—φ ¨ ℓ ¨φ2

and thus we have the required result.

Lemma 40. Let S be reduced k-bi, for all s P RSkpSq, there is t P RTSkpSq

such that s
φ
ÝÑk t.

Proof. Since s P RSkpSq, there is ψ such that s0
ψ
ÝÑk s. Since s0 P RTSkpSq, we

can apply Lemma 39 and obtain the required result.

Lemma 41. If S is reduced k-obi and reduced k-sibi, then S is k-sibi.

Proof. By contradiction. Take s0
φ
ÝÑk s “ pq;wq P RSkpSq.

– If s
pr?a
ÝÝÝÑk s1 and s

sr?b
ÝÝÝÑk s2. Then, by Lemma 39, there is t P N̂ s.t.

so
ψ
Ýãk t and s1

φ2

ÝÑk t and φ ¨ pr?a ¨φ2—ψ. Then both pr?a and sr!b must
appear in ψ, which contradicts the assumption that S is reduced k-sibi.

– If s
pr?a
ÝÝÝÑk s1 and there is pqr, sr?b, q

1
rq P δr s.t. s

φ1

ÝÑk
sp!b
ÝÝÑk s

1. Then we
have a contradiction with the assumption that S is reduced k-sibi, via by
Lemma 39 as above, with φ ¨ pr?a ¨φ1 ¨ sp!b ¨φ2—ψ.

Lemma 42. If S is reduced k-obi and reduced k-cibi, then S is k-cibi.

Proof. By contradiction. Take s0
φ
ÝÑk s “ pq;wq P RSkpSq.

– If s
pr?a
ÝÝÝÑk s1 and s

sr?b
ÝÝÝÑk s2. Then, by Lemma 39, there is t P N̂ s.t. so

ψ
Ýãk t

and s1
φ2

ÝÑk t and φ ¨ pr?a ¨φ2—φ and ψ. Clearly, we must have both pr!a

and sr!b in ψ.

‚ If we have
ψ “ ψ1 ¨ pr!a ¨ψ2 ¨ sr!b ¨ψ3 ¨ pr?a ¨ψ4, or
ψ “ ψ1 ¨ sr!b ¨ψ2 ¨pr!a ¨ψ3 ¨ pr?a ¨ψ4

where ψ1, ψ2, and ψ3 have been chosen appropriately so that the send
actions are one matched at s, then we have a contradiction with the
assumption that S is k-cibi (both messages can be consumed).

Verifying Asynchronous Interactions via Communicating Session Automata 57

‚ Assume we have

ψ “ ψ1 ¨ pr!a ¨ψ2 ¨ pr?a ¨ψ3 ¨ sr!b ¨ψ4

where ψ1, ψ2, and ψ3 have been chosen appropriately so that the send
actions are one matched at s. Since S is reduced k-cibi, we must have

ŝ $ pr?a ăψ3
sr!b, with ŝ such that s0

ψ1 ¨ pr!a ¨ψ2

ÝÝÝÝÝÝÝÝãk ŝ. However, pr!a
and sr!b appear in φ, which contradicts the existence of a dependency
chain between pr?a and sr!b by Lemma 25.

– If s
pr?a
ÝÝÝÑk s1 and there is pqr, sr?b, q

1
rq P δr s.t. s1

φ1

ÝÑk
sp!b
ÝÝÑk s

1 with ps $

pr?a ăφ1 sr!bq. Then, by Lemma 39, there is t P N̂ s.t. s0
ψ
Ýãk t, s1

φ2

ÝÑk t,
and

φ ¨ pr?a ¨φ1 ¨ sp!b ¨φ2—ψ

There are two cases depending on the structure of ψ:
‚ If sp!b appears before pr?a in ψ, then we have a contradiction with the

assumption that S is reduced k-cibi.
‚ If sp!b appears after pr?a, then pose

ψ “ ψ1 ¨ pr?a ¨ψ2 ¨ sp!b ¨ψ3

Since S is reduced k-cibi, we must have ŝ $ pr?a ăψ2
sp!b assuming ŝ

is such that s0
ψ1

ÝÝãk ŝ. By Lemma 25, we have a contradiction with the
assumption that ps $ pr?a ăφ1 sr!bq.

Theorem 11. Let S be reduced k-obi. S is reduced k-sibi iff S is k-sibi.

Proof. By Lemma 41 and Lemma 34.

Lemma 43. Let S be reduced k-bi, if S is k-exhaustive, then S is also reduced
k-exhaustive.

Proof. We show that Definition 9 applies to every state s P RTSkpSq Ď TSkpSq.
By assumption, we have that for every p P P , if qp is a sending state, then

@pqp, ℓ, q
1
pq P δp : Dφ P A

˚ : s
φ
ÝÑk

ℓ
ÝÑk and p R φ. By Lemma 39, there is φ1 and ψ

such that s
ψ
Ýãk and φ ¨ ℓ ¨φ1—ψ. This implies that we have ψ “ ψ1 ¨ ℓ ¨ψ2 with

subj pℓq R ψ1, and s
ψ1 ¨ ℓ
ÝÝÝãk, the required result.

Lemma 44. Let S be reduced k-bi, if S is reduced k-exhaustive, then S is also
k-exhaustive.

Proof. By contradiction, take s P TSkpSq such that the k-exhaustivity property
does not hold (i.e., there is pq!a that cannot be fired within bound k). By

Lemma 40, there is t P RTSkpSq and φ such that s
φ
ÝÑk t. Then either pq!a is in

φ, i.e., we have a contradiction, or p is in the same state in t. By assumption,

there is ψ such that t
ψ ¨ pq!a
ÝÝÝÝãk, and by Lemma 39 we also have t

ψ ¨ pq!a
ÝÝÝÝÑk, a

contradiction.

58 Julien Lange and Nobuko Yoshida

Theorem 12. Let S be reduced k-bi, S is reduced k-exhaustive iff S is k-
exhaustive.

Proof. By Lemma 43 and Lemma 44.

Theorem 6. Let S be reduced k-obi and reduced k-ibi. (1) S is reduced k-safe
iff S is k-safe. (2) S is reduced k-exhaustive iff S is k-exhaustive.

Proof. By Theorem 13 and Theorem 12

Lemma 45. Let S be reduced k-bi, if S is k-safe, then S is also reduced k-safe.

Proof. The proof works similarly to the proof of Lemma 43. We show that Defi-
nition 4 applies to every state in s P RTSkpSq Ď TSkpSq. Each condition follows
easily by showing the existence of an equivalent execution, by Lemma 39.

Lemma 46. Let S be reduced k-bi, if S is reduced k-safe, then S is also k-safe.

Proof. The proof works similarly to the proof of Lemma 44. By contradiction,
we assume that there is a state s for which the properties of Definition 4 do not
hold. Using Lemma 40, we show that there is an execution from s to a state in
RTSkpSq for which the properties hold by assumption.

Theorem 13. Let S be reduced k-bi, S is reduced k-safe iff S is k-safe.

Proof. By Lemma 45 and Lemma 46.

Lemma 4. Let S be a system such that RTSkpSq “ pN̂ , s0, ∆̂q, for all φ and φ1

such that s0
φ
Ýãk and s0

φ1

Ýãk, we have that: φ—φ1 ùñ φ “ φ1.

Proof. We show that φ ‰ φ1 ùñ pφ—φ1). Let ψ be the longest common

prefix of φ and φ1. Take s such that s0
ψ
Ýãk s. Since φ ‰ φ1, we must have ℓ and

ℓ1 such that s
ℓ
Ýãk and s

ℓ1

Ýãk. However, since φ—φ1, it must be the case that

subj pℓq ‰ subj pℓ1q; which gives us a contradiction since we have that s
ℓ
Ýãk and

s
ℓ1

Ýãk, while ℓ and ℓ1 must be in different sets Li and Lj .

Theorem 14. Let S be reduced k-obi. S is reduced k-cibi iff S is k-cibi.

Proof. By Lemma 35 and 42.

Theorem 4. Let S be reduced k-obi. S is reduced k-cibi (resp. k-sibi) iff S is
k-cibi (resp. k-sibi).

Proof. By Theorem 11 and Theorem 14.

Verifying Asynchronous Interactions via Communicating Session Automata 59

F Proofs for Section 5

Lemma 47. Let S be a system. If s0
φ
ÝÑk, then φ is k-match-bounded.

Proof. We first note that φ is valid, by Lemma 13. We have to show that for any
prefix ψ of φ, we have

mint|π!

pqpψq|, |π
?

pqpφq|u ´ |π?

pqpψq| ď k

There are two cases:

– If |π!
pqpψq| ď |π?

pqpφq|, we have the result immediately since

|π!

pqpψq|´ |π?

pqpψq| ď k

by hypothesis (and the definition of k-boundedness).
– If |π!

pqpψq| ą |π?
pqpφq| then the following holds

|π?

pqpφq|´ |π?

pqpψq| ă |π!

pqpψq|´ |π?

pqpψq| ď k

by hypothesis, and we have the required result.

F.1 Proofs for Section 5.1

Lemma 48. If φ ¨ ℓ ¨φ1 P A˚ is a valid k-match-bounded execution such that
subj pℓq R φ1 and φ ¨φ1 is also valid, then φ ¨φ1 is a k-match-bounded execution.

Proof. We note that we only have to consider the number of messages on the
channel of ℓ, as the others are unchanged. There are two cases depending on the
direction of ℓ.

– If ℓ “ pq!a, then the result follows trivially since the number of send actions
strictly decreases.

– If ℓ “ pq?a, we separate the prefixes of φ ¨ ℓ ¨φ1 depending on whether they
include ℓ or not.
1. For each prefix ψ of φ, we have

mint|π!

pqpψq|, |π
?

pqpφ ¨ ℓ ¨φ
1q|u ´ |π?

pqpψq| ď k

by hypothesis. We have to show that

mint|π!

pqpψq|, |π
?

pqpφ ¨ φ
1q|u ´ |π?

pqpψq| ď k

which follows trivially since |π?
pqpφ ¨φ

1q| “ |π?
pqpφ ¨ ℓ ¨φ

1q|´ 1.
2. For each prefix of ψ of φ1, we have to show that

mint|π!

pqpφ ¨ψq|, |π
?

pqpφ ¨ φ
1q|u ´ |π?

pqpφ ¨ψq| ď k

By hypothesis (subj pℓq R φ1), we have |π?
pqpφ

1q| “ 0 and since φ ¨ ℓ ¨φ1 is

valid by assumption, we have |π!
pqpφq| ě |π?

pqpφq|, hence we are left to
show that

|π?

pqpφq| ´ |π?

pqpφ ¨ψq| ď k

Similarly, we know that |π!
pqpφ ¨ ℓq|´|π

?
pqpφ ¨ ℓ ¨ψq| ď k. We have the result

since |π?
pqpφq| “ |π?

pqpφ ¨ ℓq|´ 1 and |π?
pqpφ ¨ψq| “ |π?

pqpφ ¨ ℓ ¨ψq|´ 1.

60 Julien Lange and Nobuko Yoshida

Lemma 49. If S is (reduced) k-obi, ibi, and k-exhaustive system, then it is
existentially k-bounded.

Proof. Take s and φ such that s0
φ
ÝÑ s. By Lemma 19, there is t P RSkpSq, φ

1 and

ψ such that s
φ1

ÝÑ t, s0
ψ
ÝÑk t, and φ ¨φ1

≎ψ. Note that ψ is valid by Lemma 13
and k-match-bounded by Lemma 47. We show that there is a k-match-bounded
execution that leads to s by inductively deconstructing φ1, starting from its
last element. (Base case) If φ1 “ ǫ, then we have the results immediately by
Lemma 19, i.e., we have φ ¨ ǫ≎ψ with ψ k-match-bounded.
(Inductive case) Take φ1 “ φ1 ¨ ℓ. From Lemma 19, there is ψ (k-bounded)
such that φ ¨φ1 ¨ ℓ≎ψ. Since the two executions are ≎-equivalent, we must have
ψ “ ψ0 ¨ ℓ ¨ψ1 with subj pℓq R ψ1. Hence, we have the following situation, where
the dashed execution is due to the fact that subj pℓq R ψ1 (i.e., ℓ is independent
from ψ1):

s0 s

s1

s2

t

t1

φ

φ1ψ0

ψ1

ψ1

ℓℓ

where ψ0 ¨ψ1 is valid by Lemma 13, and k-match-bounded by Lemma 48. Next,
we repeat the procedure posing ψ :“ ψ0 ¨ψ1 and φ1 :“ φ1. We note that the
procedure always terminates since the execution φ1 strictly decrease at each
iteration.

Lemma 50. If φ0 ¨φ1 is k-match-bounded and

@pq P C : |π!

pqpφ0q| ď |π?

pqpφ0 ¨φ1q|

then φ0 is k-bounded for s0.

Proof. Pick any pq P C. By definition of k-match-bounded, for each prefix ψ of
φ0 ¨φ1, we have:

mint|π!

pqpψq|, |π
?

pqpφ0 ¨φ1q|u ´ |π?

pqpψq| ď k

In particular, for each prefix ψ0 of φ0, we have mint|π!
pqpψ0q|, |π

?
pqpφ0 ¨φ1q|u ´

|π?
pqpψ0q| ď k. By assumption and the fact that ψ0 is a prefix of φ0, we have

|π!

pqpψ0q| ď |π!

pqpφ0q| ď |π?

pqpφ0 ¨φ1q|

Hence, mint|π!
pqpψ0q|, |π

?
pqpφ0 ¨φ1q|u “ |π!

pqpψ0q| and |π!
pqpψ0q| ´ |π?

pqpψ0q| ď k,
as required.

Verifying Asynchronous Interactions via Communicating Session Automata 61

Lemma 51. If S is D-k-bounded and has the eventual reception property, then
S is k-exhaustive.

Proof. (k-eventual reception) We first show that for all s “ pq;wq P RSkpSq,

if wpq “ a ¨w, then s ÝÑk
˚ pq!a
ÝÝÑk. Take φ0 such that s0

φ0ÝÑk s. By eventual

reception, we have that s
φ1

ÝÑ
pq?a
ÝÝÝÑ t, for some φ1 and t. Take φ2 such that t

φ2

ÝÑ
and

@pq P C : |π!

pqpφ0 ¨φ1q| ď |π?

pqpφ0 ¨φ1 ¨ pq?a ¨φ2q|

there is such φ2 by the eventual reception property. Since S is existentially
bounded, there is ψ such that ψ is k-match-bounded and ψ≎φ0 ¨φ1 ¨ pq?a ¨φ2.

Next, remove all actions in φ0 from ψ as follows. Take the first action in φ0
(i.e., a send action) and remove it from ψ as well as its receive counterpart, if

any. If this action is not received within φ0, then store it in ψ̂. Repeat until all
actions from φ0 have been removed, so to obtain the sequence: ψ̂ ¨ψ1 which is
k-match-bounded and valid, so that we have ψ̂ ¨ψ1 ≎ ψ̂ ¨φ1 ¨ pq?a ¨φ2.

Pose ψ1 “ ψ2 ¨ pq?a ¨ψ3 and let us show that ψ2 ¨ pq?a is k-bounded for s, by
showing that ψ̂ ¨ψ2 ¨ pq?a is k-bounded. We have to show that all prefixes are
k-bounded. This is trivial for any prefix of ψ̂ since s P RSkpSq. For any prefix

ψ̂2 of ψ2 we have to show that

@pq P C : |π!

pqpψ̂ ¨ ψ̂2q|´ |π?

pqpψ̂ ¨ ψ̂2q| ď k

Since ψ̂ ¨ψ1 is k-match-bounded, we have

@pq P C : mint|π!

pqpψ̂ ¨ ψ̂2q|, |π
?

pqpψ̂ ¨ψ2 ¨ pq?a ¨ψ3q|u ´ |π?

pqpψ̂ ¨ ψ̂2q| ď k

By construction, we have |π!
pqpψ̂ ¨ ψ̂2q| ď |π?

pqpψ̂ ¨ψ2 ¨ pq?a ¨ψ3q|, hence we have
the required result.
(k-exhaustivity) We show the rest by contradiction. Assume there is s P
RSkpSq for which the k-exhaustivity condition does not hold. Hence, there must

be pq P C such that |wpq| “ k ě 1. From the result above, we have s ÝÑk
˚ pq?a
ÝÝÝÑk t

for some a, and therefore we have t
pq!b
ÝÝÑk, for any b, a contradiction.

Lemma 52. If S is existentially k-bounded and safe, then for any k-match-

bounded φ such that s0
φ
ÝÑ s, there are ψ and φ1 such that s0

ψ
ÝÑk t and s

φ1

ÝÑ t

and ψ≎φ ¨φ1.

Proof. Take φ k-match-bounded s.t. s0
φ
ÝÑ s. By safety, there is φ1 such that

s
φ1

ÝÑ with @pq P C : |π!
pqpφq| ď |π?

pqpφ ¨φ
1q|, i.e., we extend φ with an execution

that consumes all messages sent in φ.
Since S is existentially bounded, there is ψ P rφ ¨φ1s≎XA˚|k. Take prefix ψ0

of ψ such that Dφ2 : @p P P : πppψ0q “ πppφ ¨φ
2q. If ψ0 is k-bounded, we have

the required result, otherwise, there must be a prefix ψ1 of ψ0 such that

|π!

pqpψ1q|´ |π?

pqpψ1q| ą k

62 Julien Lange and Nobuko Yoshida

However, since ψ is k-match-bounded, we have

mint|π!

pqpψ1q|, |π
?

pqpψq|u ´ |π?

pqpψ1q| ď k

and by construction of ψ≎φ ¨φ1, we have |π!
pqpψ1q ď |π?

pqpψq|, i.e., a contradic-
tion.

Theorem 7. (1) If S is (reduced) k-obi, ibi, and k-exhaustive, then it is ex-
istentially k-bounded. (2) If S is existentially k-bounded and has the eventual
reception property, then it is k-exhaustive.

Proof. Part (1) follows from Lemma 49 and Part (2) follows from Lemmas 51.

F.2 Proofs for Section 5.2

Lemma 5. Let S be a system and φ P A˚ such that s0
φ
ÝÑ s “ pq; ǫq, then φ is

k-match-bounded if and only if φ is k-bounded for s0.

Proof. The (ð) direction follows from Lemma 47. The (ñ) direction follows
from the fact that for any prefix ψ of φ, we have

|π!

pqpψq| ď |π?

pqpφq|

since all messages sent along φ are received (all channels in s are empty). Hence
we have |π!

pqpψq|´ |π?
pqpψq| ď k by Definition 22, i.e., φ is k-bounded.

Theorem 8. (1) If S is existentially k-bounded, then it is existentially stable
k-bounded. (2) If S is existentially stable k-bounded and has the stable property,
then it is existentially k-bounded.

Proof. We show both statements by contradiction.

1. Assume by contradiction that S is existentially k-bounded, but not existen-

tially stable k-bounded. Then, there must be φ such that s0
φ
ÝÑ s “ pq; ǫq

where φ has no ≎ equivalent execution which is k-bounded for s0. However,
since S is existentially k-bounded, there is ψ≎φ such that ψ is k-match-

bounded. Since s0
ψ
ÝÑ pq; ǫq, by Lemma 5, ψ is k-bounded, a contradiction.

2. Assume by contradiction that S is existentially stable k-bounded and has
the stable property, but not existentially k-bounded. Then there is φ such

that s0
φ
ÝÑ s “ pq;wq (with q not empty) such that φ has no ≎ equivalent

execution which is k-match-bounded for s0. Since S has the stable property,

we have s
φ1

ÝÑ and there is ψ≎φ ¨φ1 such that ψ is k-bounded (since S is DS-
k-bounded). Then we reason as for the proof of Lemma 49 and progressively
deconstruct φ1 to show that there is a subsequence of ψ that is k-match-
bounded and ≎-equivalent to φ, a contradiction.

Lemma 53. Let S be D-k-bounded, then for all stable configurations s and s1

in RSpSq such that s
φ
ÝÑ s1, there is ψ≎φ such that ψ is k-bounded (for s).

Verifying Asynchronous Interactions via Communicating Session Automata 63

Proof. Since s is stable and S is D-k-bounded, there is φ0 k-bounded for s0 such

that s0
φ0

ÝÑk s, and we have ψ̂ k-bounded such that ψ̂≎φ0 ¨φ. We show that we
inductively remove the actions of φ0 from φ̂ while preserving its k-boundedness.
Since s and s1 are stable, we have φ0 “ pq!a ¨φ1

1 ¨ pq?a ¨φ
1
2, with π?

pqpφ
1
1q “ ǫ.

Hence, we can remove the first respective occurrence of pq!a and pq?a from ψ̂

without affecting its k-boundedness: (i) the new execution is still valid since we
remove a send and its receive and (ii) the bound is preserved since we remove a
send and a receive simultaneously. We repeat the procedure until all the elements
of φ0 have been removed and we obtain the required result.

Lemma 6. Let S be an existentially stable k-bounded system with the stable
property, then for all s P RSkpSq, there is t stable such that s ÝÑk

˚t.

Proof. First we observe that for any stable t, we have t P RSkpSq since S is

DS-k-bounded, by Lemma 5. Assume t0 is stable and t0
φ
ÝÑk s. We show the

result by induction on the length of φ.
If φ “ ℓ, then we have the result since t0 is stable and there is stable t1 such

that t0
ℓ
ÝÑk s ÝÑ

˚t1 since S has the stable property. Finally, by Lemma 53, we
have s ÝÑk

˚t1.
Assume the result holds for φ and let us show that it holds for φ ¨ ℓ. Pose

t0
φ
ÝÑk s

ℓ
ÝÑk s

1. By induction hypothesis, we have that s
φ1

ÝÑk t for some t stable
and φ1 P A˚. We have to show that s1 ÝÑk

˚t1 with t1 stable. There are two cases:

– If subj pℓq R φ1, then we have s1 φ
ÝÑ t1 and t

ℓ
ÝÑk t

1, and we only have to show

that s1 φ
ÝÑk t

1, which follows trivially from the fact that subj pℓq R φ1 (i.e.,
there is no other send on the channel in φ1).

– If subj pℓq P φ1, then there are two sub-cases depending on the direction of ℓ.

‚ If ℓ is a receive action, then the result follows trivially.
‚ If ℓ is a send action. Assume w.l.o.g. that φ1 “ φ1

1 ¨ ℓ ¨φ
1
2 with subj pℓq R φ1

1,

then we have s1 φ1

1ÝÑk

φ1

2ÝÑk t
1 “ t, and we have the required result.

We have shown that either there is stable t such that t
ℓ
ÝÑk t

1, hence we are back
to the base case, or t “ t1, in which case the result follows trivially.

Theorem 9. Let S be an D(S)-k-bounded system with the stable property, then
it is k-exhaustive.

Proof. We first note that by Theorem 8 we have that S is both DS-k-bounded
and D-k-bounded since it has the stable property. Assume by contradiction, that

S is not k-exhaustive. Then, there is s such that s0
φ
ÝÑk s “ pq;wq and p such

that pqp, pq!a, q
1
pq P δp and ps ÝÑk

˚ pq!a
ÝÝÑkq. By Lemma 6, there is stable t such

that s
ψ
ÝÑk t. Then either p P ψ and therefore pq!a can be fired in ψ and we have

a contradiction, or p R ψ and t
pq!a
ÝÝÑk, i.e., another contradiction.

64 Julien Lange and Nobuko Yoshida

F.3 Proofs for Section 5.3

Lemma 7. Let φ be a valid execution. If φ is a k-exchange then it is a k-match-
bounded execution.

Proof. Since φ is a k-exchange, it must be of the form

φ “ φ1 ¨ψ1 ¨ ¨ ¨φn ¨ψn where @1 ď i ď n : φi P A
˚
! ^ ψi P A

˚
? ^ |φi| ď k

We must show that for every prefix φ̂ of φ and every pq P C, the following holds:

mint|π!

pqpφ̂q|, |π
?

pqpφq|u ´ |π?

pqpφ̂q| ď k

We first observe that, for all 1 ď i ď n, if φ̂ “ φ1 ¨ψ1 ¨ ¨ ¨φi is k-match-bounded,
then so is φ̂ ¨ψi (since ψi P A˚

?
), hence we only show the result for the former.

Take pq P C and pose φ̂ “ φ1 ¨ψ1 ¨ ¨ ¨φi (with 1 ď i ď n). There are two cases:

– If for all 1 ď j ă i : π!
pqpφjq “ π?

pqpψjq, then all messages sent on channel pq
are received within each exchange.
‚ Case |π!

pqpφ̂q| ď |π?
pqpφq|. We have

|π!
pqpφ̂q| “ |π!

pqpφ1 ¨ ¨ ¨φiq|
“ |π?

pqpψ1 ¨ ¨ ¨ψi´1q|` |π!
pqpφiq|

“ |π?
pqpφ̂q|` |π!

pqpφiq|

Hence, |π!
pqpφ̂q| ´ |π?

pqpφ̂q| “ |π!
pqpφiq| ď k, and we have the required

result.
‚ Case |π!

pqpφ̂q| ą |π?
pqpφq|. Then, there is i ď m ď n such that π!

pqpφmq ‰

π?
pqpψmq and we have

π?
pqpφq “ |π?

pqpψ1 ¨ ¨ ¨ψmq|
ě |π?

pqpψ1 ¨ ¨ ¨ψiq|

“ |π!
pqpφ1 ¨ ¨ ¨φiq| “ |π!

pqpφ̂q|

Hence, we obtain π?
pqpφq ě |π!

pqpφ̂q|, a contradiction with this case.

– If there is j ă i such that π!
pqpφjq ‰ π?

pqpψjq (take smallest such j), then for

all j ă m ď n : π?
pqpψmq “ ǫ, i.e., all messages sent after j are not matched.

Hence, we have
|π?

pqpφ̂q| “ |π?

pqpψ1 ¨ ¨ ¨ψjq| “ |π?

pqpφq| (6)

Thus, we have

π!
pqpφ̂q “ |π?

pqpψ1 ¨ ¨ ¨ψj´1q|` |π!
pqpφjq|` |π!

pqpφj`1 ¨ ¨ ¨φiq|
ě |π?

pqpψ1 ¨ ¨ ¨ψj´1q|` |π?
pqpψjq|` |π!

pqpφj`1 ¨ ¨ ¨φiq|
ě |π?

pqpψ1 ¨ ¨ ¨ψjq| “ |π?
pqpφq|

Hence, we only have to show that |π?
pqpφq| ´ |π?

pqpφ̂q| ď k, which holds
by (F.3).

Verifying Asynchronous Interactions via Communicating Session Automata 65

Theorem 10. (1) If S is k-synchronisable, then it is existentially k-bounded.
(2) If S is k-synchronisable and has the eventual reception property, then it is
k-exhaustive.

Proof. Item (1) follows from Lemma 7: for any execution of S, there is an equiv-
alent k-exchange, which is a k-match-bounded execution. Item (2) follows from
Item (1) and Item (2) of Theorem 8.

	Verifying Asynchronous Interactions via Communicating Session Automata

