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Abstract. This paper proposes a sound procedure to verify properties
of communicating session automata (csa), i.e., communicating automata
that include multiparty session types. We introduce a new asynchronous
compatibility property for csa, called k-multiparty compatibility (k-mc),
which is a strict superset of the synchronous multiparty compatibility
used in theories and tools based on session types. It is decomposed into
two bounded properties: (i) a condition called k-safety which guaran-
tees that, within the bound, all sent messages can be received and each
automaton can make a move; and (ii) a condition called k-exhaustivity
which guarantees that all k-reachable send actions can be fired within
the bound. We show that k-exhaustivity implies existential boundedness,
and soundly and completely characterises systems where each automaton
behaves equivalently under bounds greater than or equal to k. We show
that checking k-mc is pspace-complete, and demonstrate its scalability
empirically over large systems (using partial order reduction).

1 Introduction

Communicating automata are a Turing-complete model of asynchronous interac-
tions [10] that has become one of the most prominent for studying point-to-point
communications over unbounded first-in-first-out channels. This paper focuses
on a class of communicating automata, called communicating session automata
(csa), which strictly includes automata corresponding to asynchronous multi-
party session types [28]. Session types originated as a typing discipline for the
π-calculus [27,66], where a session type dictates the behaviour of a process wrt.
its communications. Session types and related theories have been applied to the
verification and specification of concurrent and distributed systems through their
integration in several mainstream programming languages, e.g., Haskell [44,55],
Erlang [49], F7 [48], Go [11, 37, 38, 51], Java [30, 31, 34, 65], OCaml [56], C [52],
Python [16, 47, 50], Rust [32], and Scala [61, 62]. Communicating automata and
asynchronous multiparty session types [28] are closely related: the latter can be
seen as a syntactical representation of the former [17] where a sending state cor-
responds to an internal choice and a receiving state to an external choice. This
correspondence between communicating automata and multiparty session types
has become the foundation of many tools centred on session types, e.g., for gen-
erating communication API from multiparty session (global) types [30,31,48,61],
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for detecting deadlocks in message-passing programs [51, 67], and for monitor-
ing session-enabled programs [5, 16, 47, 49, 50]. These tools rely on a property
called multiparty compatibility [6, 18, 39], which guarantees that communicating
automata representing session types interact correctly, hence enabling the iden-
tification of correct protocols or the detection of errors in endpoint programs.
Multiparty compatible communicating automata validate two essential require-
ments for session types frameworks: every message that is sent can be eventually
received and each automaton can always eventually make a move. Thus, they sat-
isfy the abstract safety invariant ϕ for session types from [63], a prerequisite for
session type systems to guarantee safety of the typed processes. Unfortunately,
multiparty compatibility suffers from a severe limitation: it requires that each
execution of the system has a synchronous equivalent. Hence, it rules out many
correct systems. Hereafter, we refer to this property as synchronous multiparty
compatibility (smc) and explain its main limitation with Example 1.

Example 1. The system in Figure 1 contains an interaction pattern that is not
supported by any definition of smc [6,18,39]. It consists of a client (c), a server
(s), and a logger (l), which communicate via unbounded fifo channels. Transi-
tion sr!a denotes that sender puts (asynchronously) message a on channel sr;
and transition sr?a denotes the consumption of a from channel sr by receiver.
The client sends a request and some data in a fire-and-forget fashion, before
waiting for a response from the server. Because of the presence of this simple
pattern, the system cannot be executed synchronously (i.e., with the restriction
that a send action can only be fired when a matching receive is enabled), hence
it is rejected by all definitions of smc from previous works, even though the
system is safe (all sent messages are received and no automaton gets stuck).

Synchronous multiparty compatibility is reminiscent of a strong form of exis-
tential boundedness. Among the existing sub-classes of communicating automata
(see [46] for a survey), existentially k-bounded communicating automata [22]
stand out because they can be model-checked [8,21] and they restrict the model
in a natural way: any execution can be rescheduled such that the number of
pending messages that can be received is bounded by k. However, existential
boundedness is generally undecidable [22], even for a fixed bound k. This short-
coming makes it impossible to know when theoretical results are applicable.

To address the limitation of smc and the shortcoming of existential bounded-
ness, we propose a (decidable) sufficient condition for existential boundedness,
called k-exhaustivity, which serves as a basis for a wider notion of new com-
patibility, called k-multiparty compatibility (k-mc) where k P Ną0 is a bound
on the number of pending messages in each channel. A system is k-mc when
it is (i) k-exhaustive, i.e., all k-reachable send actions are enabled within the
bound, and (ii) k-safe, i.e., within the bound k, all sent messages can be re-
ceived and each automaton can always eventually progress. For example, the
system in Figure 1 is k-multiparty compatible for any k P Ną0, hence it does not
lead to communication errors, see Theorem 1. The k-mc condition is a natural
constraint for real-world systems. Indeed any finite-state system is k-exhaustive
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Mc :

cs!req

cs!datasc?ko

sc?err sc?ok

Ms : cs?req
sc!ko

cs?data

sc!ok cs?data

sl!log

Ml :
sl?log

Fig. 1. Client-Server-Logger example.

(for k sufficiently large), while any system that is not k-exhaustive (resp. k-safe)
for any k is unlikely to work correctly. Furthermore, we show that if a system of
csa validates k-exhaustivity, then each automaton locally behaves equivalently
under any bound greater than or equal to k, a property that we call local bound-
agnosticity. We give a sound and complete characterisation of k-exhaustivity for
csa in terms of local bound-agnosticity, see Theorem 3. Additionally, we show
that the complexity of checking k-mc is pspace-complete (i.e., no higher than re-
lated algorithms) and we demonstrate empirically that its cost can be mitigated
through (sound and complete) partial order reduction.

In this paper, we consider communicating session automata (csa), which
cover the most common form of asynchronous multiparty session types [15] (see
Remark 3), and have been used as a basis to study properties and extensions of
session types [6, 7, 18, 30, 31, 41, 42, 47, 49, 50]. More precisely, csa are determin-
istic automata, whose every state is either sending (internal choice), receiving
(external choice), or final. We focus on csa that preserve the intent of internal
and external choices from session types. In these csa, whenever an automaton
is in a sending state, it can fire any transition, no matter whether channels are
bounded; when it is in a receiving state then at most one action must be enabled.

Synopsis In § 2, we give the necessary background on communicating automata
and their properties, and introduce the notions of output/input bound indepen-
dence which guarantee that internal/external choices are preserved in bounded
semantics. In § 3, we introduce the definition of k-multiparty compatibility
(k-mc) and show that k-mc systems are safe for systems which validate the
bound independence properties. In § 4, we formally relate existential bound-
edness [22, 35], synchronisability [9], and k-exhaustivity. In § 5 we present an
implementation (using partial order reduction) and an experimental evaluation
of our theory. We discuss related works in § 6 and conclude in § 7.

See [43] for a full version of this paper (including proofs and additional ex-
amples). Our implementation and benchmark data are available online [33].

2 Communicating Automata and Bound Independence

This section introduces notations and definitions of communicating automata
(following [12,39]), as well as the notion of output (resp. input) bound indepen-
dence which enforces the intent of internal (resp. external) choice in csa.

Fix a finite set P of participants (ranged over by p, q, r, s, etc.) and a
finite alphabet Σ. The set of channels is C def

“ tpq | p, q P P and p ‰ qu,
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A def
“ Cˆt!, ?uˆΣ is the set of actions (ranged over by `), Σ˚ (resp. A˚) is the

set of finite words on Σ (resp. A). Let w range over Σ˚, and φ, ψ range over A˚.
Also, ε (R Σ YA) is the empty word, |w| denotes the length of w, and w ¨w1 is
the concatenation of w and w1 (these notations are overloaded for words in A˚).

Definition 1 (Communicating automaton). A communicating automaton
is a finite transition system given by a triple M “ pQ, q0, δq where Q is a finite
set of states, q0 P Q is the initial state, and δ Ď QˆAˆQ is a set of transitions.

The transitions of a communicating automaton are labelled by actions in A of
the form sr!a, representing the emission of message a from participant s to r, or
sr?a representing the reception of a by r. Define subj ppq!aq “ subj pqp?aq “ p,
obj ppq!aq “ obj pqp?aq “ q, and chanppq!aq “ chanppq?aq “ pq. The projection
of ` onto p is defined as πpp`q “ ` if subj p`q “ p and πpp`q “ ε otherwise. Let :
range over t!, ?u, we define: π:pqppq:aq “ a and π:

1

pqpsr:aq “ ε if either pq ‰ sr

or : ‰ :1. We extend these definitions to sequences of actions in the natural way.
A state q P Q with no outgoing transition is final ; q is sending (resp. re-

ceiving) if it is not final and all its outgoing transitions are labelled by send
(resp. receive) actions, and q is mixed otherwise. M “ pQ, q0, δq is deterministic
if @pq, `, q1q, pq, `1, q2q P δ : ` “ `1 ùñ q1 “ q2. M “ pQ, q0, δq is send (resp.
receive) directed if for all sending (resp. receiving) q P Q and pq, `, q1q, pq, `1, q2q P
δ : obj p`q “ obj p`1q. M is directed if it is send and receive directed.

Remark 1. In this paper, we consider only deterministic communicating au-
tomata without mixed states, and call them Communicating Session Automata
(csa). We discuss possible extensions of our results beyond this class in Section 7.

Definition 2 (System). Given a communicating automatonMp “ pQp, q0p, δpq
for each p P P, the tuple S “ pMpqpPP is a system. A configuration of S is a
pair s “ pq;wq where q “ pqpqpPP with qp P Qp and where w “ pwpqqpqPC
with wpq P Σ

˚; component q is the control state and qp P Qp is the local state of
automatonMp. The initial configuration of S is s0 “ pq0; εq where q0 “ pq0pqpPP
and we write ε for the |C|-tuple pε, . . . , εq.

Hereafter, we fix a communicating session automaton Mp “ pQp, q0p, δpq for
each p P P and let S “ pMpqpPP be the corresponding system whose initial
configuration is s0. For each p P P, we assume that @pq, `, q1q P δp : subj p`q “ p.
We assume that the components of a configuration are named consistently, e.g.,
for s1 “ pq1;w1q, we implicitly assume that q1 “ pq1pqpPP and w1 “ pw1pqqpqPC .

Definition 3 (Reachable configuration). Configuration s1 “ pq1;w1q is reach-
able from configuration s “ pq;wq by firing transition `, written s

`
ÝÑ s1 (or

s ÝÑ s1 when ` is not relevant), if there are s, r P P and a P Σ such that either:

1. (a) ` “ sr!a and pqs, `, qs1q P δs, (b) q1p “ qp for all p ‰ s, (c) w1sr “ wsr ¨ a
and w1pq “ wpq for all pq ‰ sr; or

2. (a) ` “ sr?a and pqr, `, qr1q P δr, (b) q1p “ qp for all p ‰ r, (c) wsr “ a ¨w1sr,
and w1pq “ wpq for all pq ‰ sr.
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Remark 2. Hereafter, we assume that any bound k is finite and k P Ną0.

We write ÝÑ˚ for the reflexive and transitive closure of ÝÑ. Configuration
pq;wq is k-bounded if @pq P C : |wpq| ď k. We write s1

`1¨¨¨`n
ÝÝÝÝÑ sn`1 when

s1
`1
ÝÑ s2 ¨ ¨ ¨ sn

`n
ÝÑ sn`1, for some s2, . . . , sn (with n ě 0); and say that the

execution `1 ¨ ¨ ¨ `n is k-bounded from s1 if @1 ď i ď n`1 : si is k-bounded. Given
φ P A˚, we write p R φ iff φ “ φ0 ¨ ` ¨φ1 ùñ subj p`q ‰ p. We write s φ

ÝÑk s
1

if s1 is reachable with a k-bounded execution φ from s. The set of reachable
configurations of S is RS pSq “ ts | s0 ÝÑ

˚su. The k-reachability set of S is
the largest subset RSkpSq of RS pSq within which each configuration s can be
reached by a k-bounded execution from s0.

Definition 4 streamlines notions of safety from previous works [6, 12, 18, 39]
(absence of deadlocks, orphan messages, and unspecified receptions).

Definition 4 (k-Safety). S is k-safe if the following holds @pq;wq P RSkpSq:

(er) @pq P C, if wpq “ a ¨ w1, then pq;wq ÝÑk
˚ pq?a
ÝÝÝÑk.

(pg) @p P P, if qp is receiving, then pq;wq ÝÑk
˚ qp?a
ÝÝÝÑk for q P P and a P Σ.

We say that S is safe if it validates the unbounded version of k-safety (8-safe).

Property (er), called eventual reception, requires that any sent message can
always eventually be received (i.e., if a is the head of a queue then there must
be an execution that consumes a), and Property (pg), called progress, requires
that any automaton in a receiving state can eventually make a move (i.e., it can
always eventually receive an expected message).

We say that a configuration s is stable iff s “ pq; εq, i.e., all its queues
are empty. Next, we define the stable property for systems of communicating
automata, following the definition from [18].

Definition 5 (Stable). S has the stable property ( sp) if @s P RS pSq : Dpq; εq P
RS pSq : s ÝÑ˚pq; εq.

A system has the stable property if it is possible to reach a stable config-
uration from any reachable configuration. This property is called deadlock-free
in [22]. The stable property implies the eventual reception property, but not
safety (e.g., an automaton may be waiting for an input in a stable configuration,
see Example 2), and safety does not imply the stable property, see Example 4.

Example 2. The following system has the stable property, but it is not safe.

Ms : pq!bpq!a Mq : pq?a pq?b qr!c Mr : qr?c

Next, we define two properties related to bound independence. They specify
classes of csa whose branching behaviours are not affected by channel bounds.

Definition 6 (k-obi). S is k-output bound independent (k-obi), if @s “
pq;wq P RSkpSq and @p P P, if s pq!a

ÝÝÑk, then @pqp, pr!b, q1pq P δp : s
pr!b
ÝÝÑk.
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Mp :

pq!a1pq!a2

pr!c

qp?b
pq!y

pr!c qp?b

pq!a1

pq!a2qp?x

Mq :

pq?a1pq?a2

rq?d

qp!b
pq?y

rq?d qp!b

pq?a1

pq?a2qp!x

Mr : pr?c

rq!d

Fig. 2. Example of a non-ibi and non-safe system.

Definition 7 (k-ibi). S is k-input bound independent (k-ibi), if @s “ pq;wq P
RSkpSq and @p P P, if s qp?a

ÝÝÝÑk, then @` P A : s
`
ÝÑk ^ subj p`q “ p ùñ ` “ qp?a.

If S is k-obi, then any automaton that reaches a sending state is able to
fire any of its available transitions, i.e., sending states model internal choices
which are not constrained by bounds greater than or equal to k. Note that the
unbounded version of k-obi (k “ 8) is trivially satisfied for any system due to
unbounded asynchrony. If S is k-ibi, then any automaton that reaches a receiving
state is able to fire at most one transition, i.e., receiving states model external
choices where the behaviour of the receiving automaton is controlled exclusively
by its environment. We write ibi for the unbounded version of k-ibi (k “ 8).

Checking the ibi property is generally undecidable. However, systems con-
sisting of (send and receive) directed automata are trivially k-ibi and k-obi for
all k, this subclass of csa was referred to as basic in [18]. We introduce larger
decidable approximations of ibi with Definitions 10 and 11.

Proposition 1. (1) If S is send directed, then S is k-obi for all k P Ną0. (2) If
S is receive directed, then S is ibi (and k-ibi for all k P Ną0).

Remark 3. csa validating k-obi and ibi strictly include the most common forms
of asynchronous multiparty session types, e.g., the directed csa of [18], and sys-
tems obtained by projecting Scribble specifications (global types) which need to
be receive directed (this is called “consistent external choice subjects” in [31]) and
which validate 1-obi by construction since they are projections of synchronous
specifications where choices must be located at a unique sender.

3 Bounded Compatibility for csa

In this section, we introduce k-multiparty compatibility (k-mc) and study its
properties wrt. safety of communicating session automata (csa) which are k-obi
and ibi. Then, we soundly and completely characterise k-exhaustivity in terms
of local bound-agnosticity, a property which guarantees that communicating
automata behave equivalently under any bound greater than or equal to k.

3.1 Multiparty Compatibility

The definition of k-mc is divided in two parts: (i) k-exhaustivity guarantees that
the set of k-reachable configurations contains enough information to make a
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Mp:
pq!a

pq!aqp?b
Mq:

qp!bpq?a
Nq:

qp!b

pq?apq?a
N 1

q:
qp!b qp!b

pq?apq?a

Fig. 3. pMp,Mqq is non-exhaustive, pMp, Nqq is 1-exhaustive, pMp, N
1
qq is 2-exhaustive.

sound decision wrt. safety of the system; and (ii) k-safety (Definition 4) guaran-
tees that a subset of all possible executions is free of any communication errors.
Next, we define k-exhaustivity, then k-multiparty compatibility. Intuitively, a
system is k-exhaustive if for all k-reachable configurations, whenever a send ac-
tion is enabled, then it can be fired within a k-bounded execution.

Definition 8 (k-Exhaustivity). S is k-exhaustive if @pq;wq P RSkpSq and
@p P P, if qp is sending, then @pqp, `, q1pq P δp : Dφ P A˚ : pq;wq

φ
ÝÑk

`
ÝÑk ^p R φ.

Definition 9 (k-Multiparty compatibility). S is k-multiparty compatible
(k-mc) if it is k-safe and k-exhaustive.

Definition 9 is a natural extension of the definitions of synchronous multi-
party compatibility given in [18, Definition 4.2] and [6, Definition 4]. The com-
mon key requirements are that every send action must be matched by a receive
action (i.e., send actions are universally quantified), while at least one receive
action must find a matching send action (i.e., receive actions are existentially
quantified). Here, the universal check on send actions is done via the eventual
reception property (er) and the k-exhaustivity condition; while the existential
check on receive actions is dealt with by the progress property (pg).

Whenever systems are k-obi and ibi, then k-exhaustivity implies that k-
bounded executions are sufficient to make a sound decision wrt. safety. This is
not necessarily the case for systems outside of this class, see Examples 3 and 5.

Example 3. The system pMp,Mq,Mrq in Figure 2 is k-obi for any k, but not ibi
(it is 1-ibi but not k-ibi for any k ě 2). When executing with a bound strictly
greater than 1, there is a configuration where Mq is in its initial state and both
its receive transitions are enabled. The system is 1-safe and 1-exhaustive (hence
1-mc) but it is not 2-exhaustive nor 2-safe. By constraining the automata to
execute with a channel bound of 1, the left branch of Mp is prevented to execute
together with the right branch ofMq. Thus, the fact that the y messages are not
received in this case remains invisible in 1-bounded executions. This example can
be easily extended so that it is n-exhaustive (resp. safe) but not n`1-exhaustive
(resp. safe) by sending/receiving n`1 ai messages.

Example 4. The system in Figure 1 is directed and 1-mc. The system pMp,Mqq

in Figure 3 is safe but not k-mc for any finite k P Ną0. Indeed, for any execution
of this system, at least one of the queues grows arbitrarily large. The system
pMp, Nqq is 1-mc while the system pMp, N

1
qq is not 1-mc but it is 2-mc.
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Mp :
pq!y

pq!v

ps!x

pr!u

ps!xpq!v

pr!w
Mq :

rq?z

pq?y

pq?v

Mr :

rs!b
rq!z

pr?upr?w

rs!a

rs!a

pr?upr?w

rq!z

Ms :
ps?x

rs?b

rs?a

Fig. 4. Example of a system which is not 1-obi.

Example 5. The system in Figure 4 (without the dotted transition) is 1-mc, but
not 2-safe; it is not 1-obi but it is 2-obi. In 1-bounded executions, Mr can
execute rs!b ¨ rp!z , but it cannot fire rs!b ¨ rs!a (queue rs is full), which violates
the 1-obi property. The system with the dotted transition is not 1-obi, but it is
2-obi and k-mc for any k ě 1. Both systems are receive directed, hence ibi.

Theorem 1. If S is k-obi, ibi, and k-mc, then it is safe.

Remark 4. It is undecidable whether there exists a bound k for which an ar-
bitrary system is k-mc. This is a consequence of the Turing completeness of
communicating (session) automata [10,20,42].

Although the ibi property is generally undecidable, it is possible to identify
sound approximations, as we show below. We adapt the dependency relation
from [39] and say that action `1 depends on ` from s “ pq;wq, written s $ ` ă `1,
iff subj p`q “ subj p`1q _ pchanp`q “ chanp`1q ^ wchanp`q “ εq. Action `1 depends
on ` in φ from s, written s $ ` ăφ `

1, if the following holds:

s $ ` ăφ `
1 ðñ

#

ps $ ` ă `2 ^ s $ `2 ăψ `
1q _ s $ ` ăψ `

1 if φ “ `2 ¨ψ

s $ ` ă `1 otherwise

Definition 10. S is k-chained input bound independent (k-cibi) if @s “ pq;wq P
RSkpSq and @p P P, if s qp?a

ÝÝÝÑk s1, then @pqp, sp?b, q1pq P δp : s ‰ q ùñ

 ps
sp?b
ÝÝÝÑkq ^ p@φ P A˚ : s1

φ
ÝÑk

sp!b
ÝÝÑk ùñ s $ qp?a ăφ sp!bq.

Definition 11. S is k-strong input bound independent (k-sibi) if @s “ pq;wq P
RSkpSq and @p P P, if s qp?a

ÝÝÝÑk s1, then @pqp, sp?b, q1pq P δp : s ‰ q ùñ

 ps
sp?b
ÝÝÝÑk _ s

1 ÝÑk
˚ sp!b
ÝÝÑkq.

Definition 10 requires that whenever p can fire a receive action, at most
one of its receive actions is enabled at s, and no other receive transition from
qp will be enabled until p has made a move. This is due to the existence of a
dependency chain between the reception of a message (qp?a) and the matching
send of another possible reception (sp!b). Property k-sibi (Definition 11) is a
stronger version of k-cibi, which can be checked more efficiently.

Lemma 1. If S is k-obi, k-cibi (resp. k-sibi) and k-exhaustive, then it is ibi.
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The decidability of k-obi, k-ibi, k-sibi, k-cibi, and k-mc is straightforward
since both RSkpSq (which has an exponential number of states wrt. k) and ÝÑk

are finite, given a finite k. Theorem 2 states the space complexity of the proce-
dures, except for k-cibi for which a complexity class is yet to be determined. We
show that the properties are pspace by reducing to an instance of the reacha-
bility problem over a transition system built following the construction of Bollig
et al. [8, Theorem 6.3]. The rest of the proof follows from similar arguments in
Genest et al. [22, Proposition 5.5] and Bouajjani et al. [9, Theorem 3].

Theorem 2. The problems of checking the k-obi, k-ibi, k-sibi, k-safety, and
k-exhaustivity properties are all decidable and pspace-complete (with k P Ną0

given in unary). The problem of checking the k-cibi property is decidable.

3.2 Local Bound-Agnosticity

We introduce local bound-agnosticity and show that it fully characterises k-
exhaustive systems. Local bound-agnosticity guarantees that each communicat-
ing automaton behave in the same manner for any bound greater than or equal to
some k. Therefore such systems may be executed transparently under a bounded
semantics (a communication model available in Go and Rust).
Definition 12 (Transition system). The k-bounded transition system of S is
the labelled transition system (LTS) TSkpSq “ pN, s0, ∆q such that N “ RSkpSq,
s0 is the initial configuration of S, ∆ Ď NˆAˆN is the transition relation, and
ps, `, s1q P ∆ if and only if s `

ÝÑk s
1.

Definition 13 (Projection). Let T be an LTS over A. The projection of T
onto p, written πεppT q, is obtained by replacing each label ` in T by πpp`q.

Recall that the projection of action `, written πpp`q, is defined in Section 2.
The automaton πεppTSkpSqq is essentially the local behaviour of participant p

within the transition system TSkpSq. When each automaton in a system S be-
haves equivalently for any bound greater than or equal to some k, we say that
S is locally bound-agnostic. Formally, S is locally bound-agnostic for k when
πεppTSkpSqq and πεppTSnpSqq are weakly bisimilar («) for each participant p and
any n ě k. For k-obi and ibi systems, local bound-agnosticity is a necessary and
sufficient condition for k-exhaustivity, as stated in Theorem 3 and Corollary 1.

Theorem 3. Let S be a system.
(1) If Dk P Ną0 : @p P P : πεppTSkpSqq«π

ε
ppTSk`1pSqq, then S is k-exhaustive.

(2) If S is k-obi, ibi, and k-exhaustive, then @p P P :πεppTSkpSqq«π
ε
ppTSk`1pSqq.

Corollary 1. Let S be k-obi and ibi s.t. @p P P : πεppTSkpSqq«π
ε
ppTSk`1pSqq,

then S is locally bound-agnostic for k.

Theorem 3 (1) is reminiscent of the (pspace-complete) checking procedure
for existentially bounded systems with the stable property [22] (an undecidable
property). Recall that k-exhaustivity is not sufficient to guarantee safety, see Ex-
amples 3 and 5. We give an effective procedure (based on partial order reduction)
to check k-exhaustivity and related properties in [43].
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k-obi and ibi Communicating Session Automata

DS-k-bounded (Def. 16)

D-k-bounded (Def. 15)

k-synchronisable (Def. 17)
k-exhaustive (Def. 8)

Eventual reception (Def. 4 (1))

Stable (Def. 5)

Safe (Def. 4)
smc [18] k–mc (Def. 9)

7

1 8 45

2

Fig. 5. Relations between k-exhaustivity, existential k-boundedness, and k-
synchronisability in k-obi and ibi csa (the circled numbers refer to Table 1).

4 Existentially Bounded and Synchronisable Automata

4.1 Kuske and Muscholl’s Existential Boundedness

Existentially bounded communicating automata [21, 22, 35] are a class of com-
municating automata whose executions can always be scheduled in such a way
that the number of pending messages is bounded by a given value. Traditionally,
existentially bounded communicating automata are defined on communicating
automata that feature (local) accepting states and in terms of accepting runs.
An accepting run is an execution (starting from s0) which terminates in a config-
uration pq;wq where each qp is a local accepting state. In our setting, we simply
consider that every local state qp is an accepting state, hence any execution φ
starting from s0 is an accepting run. We first study existential boundedness as
defined in [35] as it matches more closely k-exhaustivity, we study the “classical”
definition of existential boundedness [22] in Section 4.2.

Following [35], we say that an execution φ P A˚ is valid if for any prefix ψ
of φ and any channel pq P C, we have that π?

pqpψq is a prefix of π!
pqpψq, i.e., an

execution is valid if it models the fifo semantics of communicating automata.

Definition 14 (Causal equivalence [35]). Given φ, ψ P A˚, we define: φmψ
iff φ and ψ are valid executions and @p P P : πppφq “ πppψq. We write rφsm for
the equivalence class of φ wrt. m.

Definition 15 (Existential boundedness [35]). We say that a valid execu-
tion φ is k-match-bounded if, for every prefix ψ of φ the difference between the
number of matched events of type pq! and those of type pq? is bounded by k,
i.e., mint|π!

pqpψq|, |π?
pqpφq|u ´ |π?

pqpψq| ď k.
Write A˚|k for the set of k-match-bounded words. An execution φ is existentially
k-bounded if rφsm X A˚ |k ‰ H. A system S is existentially k-bounded, written
D-k-bounded, if each execution in tφ | Ds : s0

φ
ÝÑsu is existentially k-bounded.

Example 6. Consider Figure 3. pMp,Mqq is not existentially k-bounded, for any
k: at least one of the queues must grow infinitely for the system to progress. Sys-
tems pMp, Nqq and pMp, N

1
qq are existentially bounded since any of their execu-

tions can be scheduled to an m-equivalent execution which is 2-match-bounded.
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The relationship between k-exhaustivity and existential boundedness is stated
in Theorem 4 and illustrated in Figure 5 for k-obi and ibi csa, where smc refers
to synchronous multiparty compatibility [18, Definition 4.2]. The circled numbers
in the figure refer to key examples summarised in Table 1. The strict inclusion of
k-exhaustivity in existential k-boundedness is due to systems that do not have
the eventual reception property, see Example 7.

Example 7. The system below is D-1-bounded but is not k-exhaustive for any k.

Mp : sp?c Ms :
sr!a

sp!b

Mr : sr?a

For any k, the channel sp eventually gets full and the send action sp!b can no
longer be fired; hence it does not satisfy k-exhaustivity. Note that each execution
can be reordered into a 1-match-bounded execution (the b’s are never matched).

Theorem 4. (1) If S is k-obi, ibi, and k-exhaustive, then it is D-k-bounded.
(2) If S is D-k-bounded and satisfies eventual reception, then it is k-exhaustive.

4.2 Existentially Stable Bounded Communicating Automata

The “classical” definition of existentially bounded communicating automata as
found in [22] differs slightly from Definition 15, as it relies on a different notion
of accepting runs, see [22, page 4]. Assuming that all local states are accepting,
we adapt their definition as follows: a stable accepting run is an execution φ
starting from s0 which terminates in a stable configuration.
Definition 16 (Existential stable boundedness [22]). A system S is ex-
istentially stable k-bounded, written DS-k-bounded, if for each execution φ in
tφ | Dpq; εq P RS pSq : s0

φ
ÝÑ pq; εqu there is ψ such that s0

ψ
ÝÑk with φmψ.

A system is existentially stable k-bounded if each of its executions leading to
a stable configuration can be re-ordered into a k-bounded execution (from s0).

Theorem 5. (1) If S is existentially k-bounded, then it is existentially stable
k-bounded. (2) If S is existentially stable k-bounded and has the stable property,
then it is existentially k-bounded.

We illustrate the relationship between existentially stable bounded commu-
nicating automata and the other classes in Figure 5. The example below further
illustrates the strictness of the inclusions, see Table 1 for a summary.

Example 8. Consider the systems in Figure 3. pMp,Mqq and pMp, N
1
qq are (triv-

ially) existentially stable 1-bounded since none of their (non-empty) executions
terminate in a stable configuration. The system pMp, Nqq is existentially stable
2-bounded since each of its executions can be re-ordered into a 2-bounded one.
The system in Example 7 is (trivially) DS-1-bounded: none of its (non-empty)
executions terminate in a stable configuration (the b’s are never received).

Theorem 6. Let S be an D(S)-k-bounded system with the stable property, then
it is k-exhaustive.
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Table 1. Properties for key examples, where direct. stands for directed, obi for k-obi,
sibi for k-sibi, er for eventual reception property, sp for stable property, exh. for k-
exhaustive, D(S)-b for D(S)-bounded, and syn. for n-synchronisable (for some n P Ną0).

# System Ref. k direct. obi sibi safe er sp exh. DS-b D-b syn.

1 pMc,Ms,Mlq Fig. 1 1 yes yes yes yes yes yes yes yes yes yes
2 pMs,Mq,Mrq Ex. 2 1 yes yes yes no yes yes yes yes yes yes
3 pMp,Mq,Mrq Fig. 2 ě 2 no yes no no no no no yes yes no
4 pMp,Mqq Fig. 3 any yes yes yes yes yes no no yes no no
5 pMp, N

1
qq Fig. 3 2 yes yes yes yes yes no yes yes yes no

6 pMp,Mq,Mr,Msq Fig. 4 2 no yes yes yes yes no yes yes yes no
7 pMs,Mr,Mpq Ex. 7 any yes yes yes no no no no yes yes yes
8 pMp,Mqq Ex. 9 1 yes yes yes yes yes yes yes yes yes no

4.3 Synchronisable Communicating Session Automata

In this section, we study the relationship between synchronisability [9] and k-
exhaustivity via existential boundedness. Informally, communicating automata
are synchronisable if each of their executions can be scheduled in such a way
that it consists of sequences of “exchange phases”, where each phase consists of
a bounded number of send actions, followed by a sequence of receive actions.
The original definition of k-synchronisable systems [9, Definition 1] is based on
communicating automata with mailbox semantics, i.e., each automaton has one
input queue. Here, we adapt the definition so that it matches our point-to-point
semantics. We write A! for AX pC ˆ t!u ˆΣq, and A? for AX pC ˆ t?u ˆΣq.

Definition 17 (Synchronisability). A valid execution φ “ φ1 ¨ ¨ ¨φn is a k-
exchange if and only if: (1) @1 ď i ď n : φi P A˚! ¨A˚? ^ |φi| ď 2k; and
(2) @pq P C : @1 ď i ď n : π!

pqpφiq ‰ π?
pqpφiq ùñ @i ă j ď n : π?

pqpφjq “ ε.
We write A˚‖k for the set of executions that are k-exchanges and say that

an execution φ is k-synchronisable if rφsm X A˚ ‖k ‰ H. A system S is k-
synchronisable if each execution in tφ | Ds : s0

φ
ÝÑsu is k-synchronisable.

Condition (1) says that execution φ should be a sequence of an arbitrary
number of send-receive phases, where each phase consists of at most 2k actions.
Condition (2) says that if a message is not received in the phase in which it is
sent, then it cannot be received in φ. Observe that the bound k is on the number
of actions (over possibly different channels) in a phase rather than the number
of pending messages in a given channel.

Example 9. The system below (left) is 1-mc and D(S)-1-bounded, but it is not
k-synchronisable for any k. The subsequences of send-receive actions in the m-
equivalent executions below are highlighted (right).

Mp : pq!a qp?c pq!b qp?d

Mq : qp!c qp!d pq?a pq?b

φ1 “ pq!a ¨ qp!c ¨ qp?c ¨ qp!d ¨ pq?a ¨ pq!b ¨ qp?d ¨ pq?b

φ2 “ pq!a ¨ qp!c ¨ qp!d ¨ qp?c ¨ pq?a ¨ pq!b ¨ qp?d ¨ pq?b

Execution φ1 is 1-bounded for s0, but it is not a k-exchange since, e.g., a is
received outside of the phase where it is sent. In φ2, message d is received outside
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Table 2. Experimental evaluation. |P| is the number of participants, k is the bound,
|RTS | is the number of transitions in the reduced TSkpSq (see [43]), direct. stands for
directed, Time is the time taken to check all the properties shown in this table, and
gmc is yes if the system is generalised multiparty compatible [39].

Example |P| k |RTS | direct. k-obi k-cibi k-mc Time gmc

Client-Server-Logger 3 1 11 yes yes yes yes 0.04s no
4 Player game: [39] 4 1 20 no yes yes yes 0.05s yes
Bargain [39] 3 1 8 yes yes yes yes 0.03s yes
Filter collaboration [68] 2 1 10 yes yes yes yes 0.03s yes
Alternating bit: [59] 2 1 8 yes yes yes yes 0.04s no
TPMContract v2: [25] 2 1 14 yes yes yes yes 0.04s yes
Sanitary agency: [60] 4 1 34 yes yes yes yes 0.07s yes
Logistic: [54] 4 1 26 yes yes yes yes 0.05s yes
Cloud system v4 [24] 4 2 16 no yes yes yes 0.04s yes
Commit protocol [9] 4 1 12 yes yes yes yes 0.03s yes
Elevator: [9] 5 1 72 no yes no yes 0.14s no
Elevator-dashed: [9] 5 1 80 no yes no yes 0.16s no
Elevator-directed: [9] 3 1 41 yes yes yes yes 0.07s yes
Dev system [58] 4 1 20 yes yes yes yes 0.05s no
Fibonacci [48] 2 1 6 yes yes yes yes 0.03s yes
Sap-Negot. [48,53] 2 1 18 yes yes yes yes 0.04s yes
sh [48] 3 1 30 yes yes yes yes 0.06s yes
Travel agency [48,64] 3 1 21 yes yes yes yes 0.05s yes
http [29, 48] 2 1 48 yes yes yes yes 0.07s yes
smtp [30, 48] 2 1 108 yes yes yes yes 0.08s yes
gen_server (buggy) [67] 3 1 56 no no yes no 0.03s no
gen_server (fixed) [67] 3 1 45 no yes yes yes 0.03s yes
double buffering [45] 3 2 16 yes yes yes yes 0.01s no

of its sending phase. In the terminology of [9], this system is not k-synchronisable
because there is a “receive-send dependency” between the exchange of message
c and b, i.e., p must receive c before it sends b. Hence, there is no k-exchange
that is m-equivalent to φ1 and φ2.

Theorem 7. (1) If S is k-synchronisable, then it is D-k-bounded. (2) If S is k-
synchronisable and has the eventual reception property, then it is k-exhaustive.

Figure 5 and Table 1 summarise the results of § 4 wrt. k-obi and ibi csa.
We note that any finite-state system is k-exhaustive (and D(S)-k-bounded) for
sufficiently large k, while this does not hold for synchronisability, see Example 9.

5 Experimental Evaluation

We have implemented our theory in a tool [33] which takes two inputs: (i) a
system of communicating automata and (ii) a bound max. The tool iteratively
checks whether the system validates the premises of Theorem 1, until it succeeds
or reaches k “ max. We note that the k-obi and ibi conditions are required for
our soundness result (Theorem 1), but are orthogonal for checking k-mc. Each
condition is checked on a reduced bounded transition system, called RTSkpSq.
Each verification procedure for these conditions is implemented in Haskell using
a simple (depth-first-search based) reachability check on the paths of RTSkpSq.
We give an (optimal) partial order reduction algorithm to construct RTSkpSq
in [43] and show that it preserves our properties.
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We have tested our tool on 20 examples taken from the literature, which
are reported in Table 2. The table shows that the tool terminates virtually in-
stantaneously on all examples. The table suggests that many systems are indeed
k-mc and most can be easily adapted to validate bound independence. The last
column refers to the gmc condition, a form of synchronous multiparty compat-
ibility (smc) introduced in [39]. The examples marked with : have been slightly
modified to make them csa that validate k-obi and ibi. For instance, we take
only one of the possible interleavings between mixed actions to remove mixed
states (taking send action before receive action to preserve safety), see [43].

We have assessed the scalability of our approach with automatically gener-
ated examples, which we report in Figure 6. Each system considered in these
benchmarks consists of 2m (directed) csa for some m ě 1 such that S “

pMpiq1ďiď2m, and each automaton Mpi is of the form (when i is odd):

Mpi :

pipi`1!a1

pipi`1!an

pipi`1!a1

pipi`1!an

pi`1pi?a1

pi`1pi?an

pi`1pi?a1

pi`1pi?an

k times k times

Each Mpi sends k messages to participant pi`1, then receives k messages from
pi`1. Each message is taken from an alphabet ta1 , . . . , anu (n ě 1). Mpi has the
same structure when i is even, but interacts with pi´1 instead. Observe that any
system constructed in this way is k-mc for any k ě 1, n ě 1, and m ě 1. The
shape of these systems allows us to assess how our approach fares in the worst
case, i.e., large number of paths in RTSkpSq. Figure 6 gives the time taken for
our tool to terminate (y axis) wrt. the number of transitions in RTSkpSq where
k is the least natural number for which the system is k-mc. The plot on the left
in Figure 6 gives the timings when k is increasing (every increment from k“2 to
k“100) with the other parameters fixed (n“1 and m“5). The middle plot gives
the timings when m is increasing (every increment from m“1 to m“26) with
k“10 and n“1. The right-hand side plot gives the timings when n is increasing
(every increment from n“1 to n“10) with k“2 and m“1. The largest RTSkpSq
on which we have tested our tool has 12222 states and 22220 transitions, and
the verification took under 17 minutes.3 Observe that partial order reduction
mitigates the increasing size of the transition system on which k-mc is checked,
e.g., these experiments show that parameters k and m have only a linear effect
on the number of transitions (see horizontal distances between data points).
However the number of transitions increases exponentially with n (since the
number of paths in each automaton increases exponentially with n).

6 Related Work

Theory of communicating automata Communicating automata were introduced,
and shown to be Turing powerful, in the 1980s [10] and have since then been
3 All the benchmarks in this paper were run on an 8-core Intel i7-7700 machine with
16GB RAM running a 64-bit Linux.
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Fig. 6. Benchmarks: increasing k (left), increasingm (middle), and increasing n (right).

studied extensively, namely through their connection with message sequence
charts (MSC) [46]. Several works achieved decidability results by using bag or
lossy channels [1, 2, 13,14] or by restricting the topology of the network [36,57].

Existentially bounded communicating automata stand out because they pre-
serve the fifo semantics of communicating automata, do not restrict the topol-
ogy of the network, and include infinite state systems. Given a bound k and an
arbitrary system of (deterministic) communicating automata S, it is generally
undecidable whether S is existentially k-bounded. However, the question be-
comes decidable (pspace-complete) when S has the stable property. The stable
property is itself generally undecidable (it is called deadlock-freedom in [22,35]).
Hence this class is not directly applicable to the verification of message passing
programs since its membership is overall undecidable. We have shown that k-obi,
ibi, and k-exhaustive csa systems are (strictly) included in the class of existen-
tially bounded systems. Hence, our work gives a sound practical procedure to
check whether csa are existentially k-bounded. To the best of our knowledge, the
only tools dedicated to the verification of (unbounded) communicating automata
are McScM [26] and Chorgram [40]. Bouajjani et al. [9] study a variation of com-
municating automata with mailboxes (one input queue per automaton). They
introduce the class of synchronisable systems and a procedure to check whether
a system is k-synchronisable; it relies on executions consisting of k-bounded ex-
change phases. Given a system and a bound k, it is decidable (pspace-complete)
whether its executions are equivalent to k-synchronous executions. Section 4.3
states that any k-synchronisable system which satisfies eventual reception is also
k-exhaustive, see Theorem 7. In contrast to existential boundedness, synchro-
nisability does not include all finite-state systems. Our characterisation result,
based on local bound-agnosticity (Theorem 3), is unique to k-exhaustivity. It
does not apply to existential boundedness nor synchronisability, see, e.g., Exam-
ple 7. The term “synchronizability” is used by Basu et al. [3,4] to refer to another
verification procedure for communicating automata with mailboxes. Finkel and
Lozes [19] have shown that this notion of synchronizability is undecidable. We
note that a system that is safe with a point-to-point semantics, may not be safe
with a mailbox semantics (due to independent send actions), and vice-versa. For
instance, the system in Figure 2 is safe when executed with mailbox semantics.
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Multiparty compatibility and programming languages The first definition of mul-
tiparty compatibility appeared in [18, Definition 4.2], inspired by the work in [23],
to characterise the relationship between global types and communicating au-
tomata. This definition was later adapted to the setting of communicating timed
automata in [6]. Lange et al. [39] introduced a generalised version of multiparty
compatibility (gmc) to support communicating automata that feature mixed or
non-directed states. Because our results apply to automata without mixed states,
k-mc is not a strict extension of gmc, and gmc is not a strict extension of k-mc
either, as it requires the existence of synchronous executions. In future work, we
plan to develop an algorithm to synthesise representative choreographies from
k-mc systems, using the algorithm in [39].

The notion of multiparty compatibility is at the core of recent works that
apply session types techniques to programming languages. Multiparty compat-
ibility is used in [51] to detect deadlocks in Go programs, and in [30] to study
the well-formedness of Scribble protocols [64] through the compatibility of their
projections. These protocols are used to generate various endpoint APIs that im-
plement a Scribble specification [30, 31, 48], and to produce runtime monitoring
tools [47,49,50]. Taylor et al. [67] use multiparty compatibility and choreography
synthesis [39] to automate the analysis of the gen_server library of Erlang/OTP.
We can transparently widen the set of safe programs captured by these tools by
using k-mc instead of synchronous multiparty compatibility (smc). The k-mc
condition corresponds to a much wider instance of the abstract safety invariant
ϕ for session types defined in [63]. Indeed k-mc includes smc (see [43]) and all
finite-state systems (for k sufficiently large).

7 Conclusions

We have studied csa via a new condition called k-exhaustivity. The k-exhaustivity
condition is (i) the basis for a wider notion of multiparty compatibility, k-mc,
which captures asynchronous interactions and (ii) the first practical, empirically
validated, sufficient condition for existential k-boundedness. We have shown that
k-exhaustive systems are fully characterised by local bound-agnosticity (each au-
tomaton behaves equivalently for any bound greater than or equal to k). This
is a key requirement for asynchronous message passing programming languages
where the possibility of having infinitely many orphan messages is undesirable,
in particular for Go and Rust which provide bounded communication channels.

For future work, we plan to extend our theory beyond csa. We believe that it
is possible to support mixed states and states which do not satisfy ibi, as long as
their outgoing transitions are independent (i.e., if they commute). Additionally,
to make k-mc checking more efficient, we will elaborate heuristics to find optimal
bounds and off-load the verification of k-mc to an off-the-shelf model checker.
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