
Verifying Message-Passing Programs
with Dependent Behavioural Types

Alceste Scalas

Imperial College London

and Aston University, Birmingham

UK

a.scalas@aston.ac.uk

Nobuko Yoshida

Imperial College London

UK

n.yoshida@imperial.ac.uk

Elias Benussi

Imperial College London

and Faculty Science Ltd.

UK

elias@faculty.ai

Abstract
Concurrent and distributed programming is notoriously hard.

Modern languages and toolkits ease this difficulty by offering

message-passing abstractions, such as actors (e.g., Erlang,

Akka, Orleans) or processes (e.g., Go): they allow for simpler

reasoning w.r.t. shared-memory concurrency, but do not

ensure that a program implements a given specification.

To address this challenge, it would be desirable to specify

and verify the intended behaviour of message-passing applica-

tions using types, and ensure that, if a program type-checks

and compiles, then it will run and communicate as desired.

We develop this idea in theory and practice. We formalise

a concurrent functional language λπ⩽ , with a new blend of

behavioural types (from π -calculus theory), and dependent

function types (from the Dotty programming language, a.k.a.

the future Scala 3). Our theory yields four main payoffs: (1) it

verifies safety and liveness properties of programs via type–

level model checking; (2) unlike previous work, it accurately

verifies channel-passing (covering a typical pattern of actor

programs) and higher-order interaction (i.e., sending/receiv-

ing mobile code); (3) it is directly embedded in Dotty, as a

toolkit called Effpi, offering a simplified actor-based API;

(4) it enables an efficient runtime system for Effpi, for highly
concurrent programs with millions of processes/actors.

CCS Concepts • Theory of computation → Process cal-

culi; Type structures; Verification by model checking; • Soft-
ware and its engineering→ Concurrent programming lan-

guages.

Keywords behavioural types, dependent types, processes,

actors, Dotty, Scala, temporal logic, model checking

ACM Reference Format:
Alceste Scalas, Nobuko Yoshida, and Elias Benussi. 2019. Verifying

Message-Passing Programs with Dependent Behavioural Types . In

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

This is the author’s version of the work. It is posted here for your personal

use. Not for redistribution. The definitive Version of Record was published in

Proceedings of the 40th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA,

https://doi.org/10.1145/3314221.3322484.

Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’19), June 22–26, 2019,

Phoenix, AZ, USA. ACM, New York, NY, USA, 15 pages. https://doi.
org/10.1145/3314221.3322484

1 Introduction
Consider this specification for a payment service with audit-

ing (from a use case for the Akka Typed toolkit [42, 50]):

1. the service waits for Paymessages, carrying an amount;

2. the service can decide to either:

a. reject the payment, by sending Rejected to the payer;

b. accept the payment. Then, it must report it to an audit-

ing service, and send Accepted to the payer;

3. then, the service loops to 1, to handle new Payments.

This can be implemented using various languages and tools

for concurrent and distributed programming. E.g., using

Scala and Akka Typed [50], a developer can write a solution

similar to Fig. 1: payment is an actor, receiving messages of

type Pay (line 1); aud is the actor reference of the auditor,

used to send messages of type Audit; whenever a pay mes-

sage is received (line 3), payment checks the amount (line 4),

and uses the pay.replyTo field to answer either Accepted
or Rejected — notifying the auditor in the first case.

The typed actor references in Fig. 1 guarantee type safety:

e.g., writing send(aud, "Hi") causes a compilation error.

However, the payment service specification is not enforced:

e.g., if the developer forgets to write line 7, the code still com-

piles, but accepted payments are not audited. This is a typical

concurrency bug: a missing or out-of-order communication

can cause protocol violations, deadlocks, or livelocks. Such

bugs are often spotted late, during software testing or main-

tenance — when they are more difficult to find and fix, and

harmful: e.g., what if unaudited payments violate fiscal rules?

These issues were considered during the design of Akka

Typed, with the idea of using types for specifying protocols

[46], and produce compilation errors when a program viol-

ates a desired protocol. However, the resulting experiments

[41] had no rigorous grounding: although inspired by the

session types theory [3, 26], the approach was informal, and

the kind of assurances that it could provide are unclear. Still,

the idea has intriguing potential: if realised, it would allow

to check the payment specification above at compile-time.

https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/3314221.3322484

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Alceste Scalas, Nobuko Yoshida, and Elias Benussi

1 def payment(aud: ActorRef[Audit[_]]): Actor[Pay, _] =

2 forever {

3 read { pay: Pay =>

4 if (pay.amount > 42000) {

5 send(pay.replyTo, Rejected("Too high!"))

6 } else {

7 send(aud, Audit(pay)) >>

8 send(pay.replyTo, Accepted)

9 } } }

Figure 1. Implemention of the payment service specification

(§1). Although similar to Akka Typed [50], it is written in

Dotty and Effpi, described in §5; “>>” (l.7) means “and then.”

Our proposal is a new take on specifying and statically

verifying the behaviour of concurrent programs, in two steps.

Step 1: enforcing protocols at compile-time We develop

Effpi [64], a toolkit for message-passing programming in

Dotty (a.k.a. Scala 3), that allows to verify the code in Fig. 1

against its specification, at compile time. This is achieved by

replacing the rightmost “_” (line 1) with a behavioural type:

Forever[In[Pay, (p: Pay) => // Dependent function type [16]

Out[p.replyTo.type, Rejected]

| (Out[aud.type, Audit[p.type]] >>:

Out[p.replyTo.type, Accepted])]]

With this type annotation, the code in Fig. 1 still type-checks

and compiles; but if, e.g., line 7 is forgotten, or changed in a

way that does not audit properly (e.g., writing null instead

of aud), then a compilation error ensues. The type above

formalises the payment service specification by capturing the

desired behaviour of its implementation, and tracking which

ActorReferences are used for interacting, and when. Type

“In” (provided by Effpi) requires to wait for a message p of

type Pay, and then either (| means “or”) send Rejected on
p.replyTo, or send an audit, and then (>>:) send Accepted.
Notably, p is bound by a dependent function type [16].

Effpi is built upon a concurrent functional calculus for

channel-based interaction, called λπ⩽ ; its novelty is a blend

of behavioural types (inspired by π -calculus literature) with
dependent function types (inspired by Dotty’s foundation D<:

[2]), achieving unique specification and verification capab-

ilities. Effpi implements λπ⩽ as an internal DSL in Dotty —

plus syntactic sugar for an actor-based API (cf. Fig. 1).

Step 2: verification of safety / liveness properties In Step

1, we establish the correspondence between protocols and

programs, via syntax-driven typing rules. But this is not

enough: programs may be expected to have safety properties

(“unwanted events never happen”) or liveness properties

(“desired events will happen”) [43]. E.g., in our example, we

want each accepted payment to be audited; but in principle,

an auditor’s implementation might be based on a type like:

In[Audit[_], (a: Audit[_]) => End]

B = {tt,ff} C = {a, b, c, . . .} X = {x, y, z, . . .}

terms T ∋ t , t ′, . . . F X
�� V �� ¬t �� if t then t1 else t2

let x = t in t ′
�� t t ′ �� chan()

�� P
values V ∋ u,v, . . . F B

�� C �� λx .t �� () �� err
processes P ∋ p,q, . . . F end

�� send(t , t ′, t ′′) �� recv(t , t ′) �� t || t ′
Figure 2. Syntax of λπ⩽ terms. The set C (highlighted) con-

tains channel instances, that are part of the run-time syntax.

(i.e., receive one Audit message a, and terminate). This im-

plementation, in isolation, may be deemed correct by mere

type checking; however, if such an auditor is composed with

the payment service above (receiving messages sent on aud),
the resulting application would not satisfy the desired prop-

erty: only one accepted payment is audited. With complex

protocols, similar problems become more difficult to spot.

The issue is that types in λπ⩽ and Effpi can specify rich

protocols — but when such protocols (and their implementa-

tions) are composed, they might yield undesired behaviours.

Hence, we develop a method to: (1) compose types/protocols,

and decide whether they enjoy safety / liveness properties;

(2) transfer behavioural properties of types to programs.

Contribution We present a new method to develop mes-

sage-passing programs with verified safety/liveness prop-

erties, via type-level model checking. The key insight is: we

use variables in types, to track inputs/outputs in programs,

through a novel blend of behavioural+dependent function

types. Unlike previous work, our theory can track channels

across transmissions, and verify mobile code, covering import-

ant features of modern message-passing programs.

Outline. §2 formalises the λπ⩽ calculus, at the basis of

Effpi. §3 presents type system of λπ⩽ . §4 shows the cor-

respondence between type / process transitions (Thm. 4.4,

4.5), and how to transfer temporal logic judgements on types

(that are decidable, by Lemma 4.7) to processes. This yields

Thm. 4.10: our new method to verify safety / liveness proper-

ties of programs. §5 explains how the design of λπ⩽ naturally

leads Effpi’s implementation (i.e., the paper’s companion

artifact), and evaluates: (1) its run-time performance and

memory use (compared with Akka Typed); (2) the speed of

type-level model checking. §6 discusses related work.

The technical report [70] contains proofs and more material.

2 The λπ⩽-Calculus
The theoretical basis of our work is a λ-calculus extended
with channels, input/output, and parallel composition, called

λπ⩽ . The “π” denotes both: (1) its use of dependent function

types, that, together with subtyping⩽, are cornerstones of its
typing system (§3); and (2) its connection with the π -calculus
[54, 55, 63]. Indeed, λπ⩽ is a monadic-style encoding of the

higher-order π -calculus: continuations are λ-terms, and this

will be helpful for typing (§3) and implementation (§5).

Verifying Message-Passing Programs with Dependent Behavioural Types PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Definition 2.1. The syntax of λπ⩽ is in Fig. 2. Elements of

C are run-time syntax. Free/bound variables fv(t)/bv(t) are
defined as usual.We adopt the Barendregt convention: bound

variables are syntactically distinct from each other, and from

free variables. We write λ_.t for λx .t , when x < fv(t).

The set of values V includes booleans B, channel instances
C, function abstraction, the unit (), and error. The terms

(in T) can be variables (from X), values (from V), various
standard constructs (negation ¬t , if/then/else, let binding,
function application), and also channel creationchan(), and
process terms (from P). The primitive chan() evaluates by
returning a fresh channel instance from C—whose elements

are part of the run-time syntax, and cannot be written by

programmers. Process terms include the terminated process

end, the output primitive send(t , t ′, t ′′) (meaning: send t ′

through t , and continue as t ′′), the input primitive recv(t , t ′)
(meaning: receive a value from t , and continue as t ′), and the
parallel composition t ||t ′ (meaning: t and t ′ run concurrently,
and can interact). λπ⩽ can be routinely extended with, e.g.,

integers, strings, records, variants: we use them in examples.

Example 2.2. A ping-pong system in λπ⩽ is written as:

let pinger = λself .λpongc .(
send(pongc, self , λ_.(

recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreplyTo .(

send(replyTo, "Hi!", λ_.(
end)))))

let sys = λy′ .λz′ .
(
pinger y

′
z
′ || ponger z′

)
let main = λ_.let y =chan() in let z =chan() in sys y z

• pinger is an abstract process that takes two channels: self

(its own input channel), and pongc. It uses pongc to send

self , then uses self to receive a response, and ends;
• ponger takes a channel self , uses it to receive replyTo, then

uses replyTo to send "Hi!", and ends;
• sys takes channels y

′
, z

′
, and uses them to instantiate

pinger and ponger in parallel;

• invoking main () instantiates syswith y and z (containing

channel instances): this lets pinger and ponger interact.

Note that in pinger and ponger , the last argument of send/recv
is always an abstract process term: this is expected by the

semantics (Def. 2.4), and enforced via typing (§3).

Remark 2.3. In Ex. 2.2, pinger / ponger use channel passing

to realise a typical pattern of actor programs: they have their

own “mailbox” (self), and interact by exchanging their own

“reference” (again, self). We will leverage this intuition in §5.

Definition 2.4 (Semantics of λπ⩽). Evaluation contexts E

and reduction→ are illustrated in Fig. 3, where congruence

≡ is defined as: t1 || t2 ≡ t2 || t1 and end || end ≡ end, plus
α-conversion. We write→∗

for the reflexive and transitive

closure of→. We say “t has an error” iff t =E[err] (for some

E). We say “t is safe” iff ∀t ′ : t →∗ t ′ implies t ′ has no error.

Def. 2.4 is a standard call-by-value semantics, with two

rules for concurrency. [R-chan()] says that chan() returns a

fresh channel instance; [R-Comm] says that the parallel com-

position send(a,u,v1) ||recv(a,v2), where both sides operate

on a same channel instance a, transfers the value u on the

receiver side, yielding v1 () || v2 u: hence, if v1 and v2 are

function values, the process keeps running by applying v1 ()

and v2 u — i.e. the sent value is substituted inside v2. The

error rules say how terms can “go wrong:” they include usual

type mismatches (e.g., it is an error to apply a non-function

value u to any v), and three rules for concurrency: it is an er-

ror to receive/send data using a value u that is not a channel,

and it is an error to put a value in a parallel composition (i.e.,

only processes from P in Fig. 2 are safely composed by ||).

3 Type System
We now introduce the type system of λπ⩽ . Its design is re-

miniscent of the simply-typed λ-calculus, except that (1) we
include union types and equi-recursive types, (2) we add

types for channels and processes, and (3) we allow types to

contain variables from the term syntax (inspired by D<:, the

calculus behind Dotty [2]). The syntax of types is in Def. 3.1.

Notably, points (1) and (3) establish a similarity between

λπ⩽ and F<: (System F with subtyping [8]) equipped with

equi-recursive types [32]. Indeed, point (3)means that a type

T is only valid if its variables exist in the typing environ-

ment — which, in turn, must contain valid types. Similarly, in

F<:, polymorphic types can depend on type variables in the

environment; hence, we use mutually-defined judgements,

akin to those of F<:, to assess the validity of environments,

types, subtyping, and typed terms (Def. 3.2).

Definition 3.1 (Syntax of types). Types, ranged over by

S,T ,U , . . ., are inductively defined by the productions:

bool

�� () �� ⊤ �� ⊥ �� T ∨U
�� Π(x:U)T

�� µx .T ��
x

c
io[T]

��
c

i[T]
��

c
o[T]

proc
�� nil �� o[S,T ,U]

�� i[S,T] �� p[T ,U]

Free/bound variables are defined as usual.WewriteU {S/x}

for the type obtained fromU by replacing its free occurrences

of x with S . If T =Π(x:U ′)U , then T S stands for U {S/x}.

We write Π()T for Π(x:())T if x < fv(T), and distinguish

recursion variables as t, t′, ... (i.e., we write µt.T). We write

T̃ for an n-tuple T1, ...,Tn , and T ∈U if T occurs inU .

The relation ≡ is the smallest congruence such that:

T ∨U ≡ U ∨T S ∨ (T ∨U) ≡ (S ∨T) ∨U µt.T ≡ T {µt.T/t}
p[T ,U] ≡ p[U ,T] p[S, p[T ,U]] ≡ p[p[S,T],U] p[T ,nil] ≡ T

The first row of productions in Def. 3.1 includes booleans,

the unit type (), top/bottom types ⊤/⊥, the union type T ∨U ,

the dependent function type Π(x:U)T and the recursive type

µx .T (they both bind x with scope T), and variables x (from

the setX in Def. 2.1): the underlining is a visual clue to better

distinguish x used in a type, from x used in a λπ⩽ term.

The second row of Def. 3.1 formalises channel types: c
io[T]

denotes a channel allowing to input or output values of type

T ; instead, c
i[T] only allows for input, and c

o[T] for output.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Alceste Scalas, Nobuko Yoshida, and Elias Benussi

E F []
�� ¬E �� if E then t1 else t2

�� let x = E in t
�� let x = w in E

�� E t
�� w E

send(E, t , t ′)
�� send(w, E, t ′) �� send(w,w ′, E)

�� recv(E, t) �� recv(w, E) �� E || t (where w,w ′ ∈ V∪X)

t ′
1
≡ t1 t1 → t2 t2 ≡ t ′

2

t ′
1
→ t ′

2

[R-≡]
t → t ′

E[t] → E[t ′]
[R-E]

¬tt → ff [R-¬tt]

¬ff → tt [R-¬ff]
(λx .t)v → t{v/x} [R-λ]

if tt then t1 else t2 → t1 [R-if-tt]

if ff then t1 else t2 → t2 [R-if-ff]

w ∈ V ∪ X
let x = w in E[x] → let x = w in E[w]

[R-let]
x < fv(t)

let x = w in t → t
[R-letgc] a fresh

chan() → a
[R-chan()]

send(a,u,v1) || recv(a,v2) → v1 () || v2 u
[R-Comm]

v < B
¬v → err

u < {λx .t | x ∈X, t ∈T}
uv → err

v < B

if v then t ′ else t ′′ → err
u < C

recv(u,v) → err
u < C

send(u,v1,v2) → err
t ∈ V

t || t ′ → err

Figure 3. Semantics of λπ⩽ : evaluation contexts E (top), reduction rules (middle), and error rules (last row).

The third row of Def. 3.1 formalises process types. The gen-

eric process type proc denotes any process term; nil denotes a
terminated process; the output type o[S,T ,U] denotes a pro-

cess that sends a T -typed value on an S-typed channel, and

continues asU ; the input type i[S,T] denotes a process that

receives a value from an S-typed channel and continues as

T ; the parallel type p[T ,U] denotes the parallel composition

of two processes (of types T andU).

Definition 3.2. These judgements are formalised in Fig. 4:

⊢ Γ env Γ is a valid typing environment

Γ ⊢ T type T is a valid type in Γ

Γ ⊢ T̃ type holds iff ∀U ∈T̃ : Γ ⊢ U type

Γ ⊢ T π -type T is a valid process type in Γ

Γ ⊢ T̃ π -type holds iff ∀U ∈T̃ : Γ ⊢ U π -type

Γ ⊢ T̃ *-type holds if Γ ⊢ T̃ type or Γ ⊢ T̃ π -type

Γ ⊢ T ⩽ U T is subtype ofU in Γ, if Γ ⊢ T ,U *-type

Γ ⊢ t : T t has type T in Γ

A typing environment Γmaps variables (fromX in Def. 2.1)

to types; the order of the entries of Γ is immaterial. All

judgements in Fig. 4 are inductive, except subtyping, that is

coinductive (hence the double inference lines). Crucially, in

Fig. 4 we have two valid type judgements, for two kinds of

types: Γ ⊢ T type and Γ ⊢ T π -type. The former is standard

(except for rule [T -c], for valid channel types); the latter distin-

guishes process types. Note that subtyping only relates types

of the same kind. Importantly, a typing environment Γ can

map a variable to a type (rule [Γ-x]), but not to a π -type; this
also means that function arguments cannot be π -typed. Still,
in a function type Π(x:T)U , the return type U can be a π -
type (rule [T π -Π]): i.e., it is possible to define abstract process

types (cf. Ex. 3.3 and 3.4 later). Rules [T -µ] and [π -µ] are based

on [32, §2], and require recursive types to be contractive:

e.g., µt1 .µt2µtn .(t1∨U) is not a type; clause “x < fv
–(T)”

means that variable x is not bound in negative position in

T , as in F<: (Details: [70]). Recursion is handled by [t -let]: in

let x = t in t ′, term t can refer to x. Rule [⩽-Π], based on [9],

ensures decidability of subtyping [32, §1]: it is often needed

in practice, and we use it in Def. 4.2, Lemma 4.7. The rest of

Fig. 4 is standard; we discuss the main judgements.

Variables, types, subtyping, and dependencies The en-

vironment Γ=x:T assigns type T to variable x. Hence, by

rule [T -x], the type x is valid in Γ; and indeed, by rule [t -x], we

can infer Γ ⊢ x : x, i.e., the term x has type x. Intuitively,

this means that x is the “most precise” type for term x; this

is formally supported by the subtyping rule [t -x], that says:

as Γ maps term x to T , type x is smaller than T . To retrieve

from Γ the information that term x has (also) type T , we use
subtyping and subsumption (rule [t -⩽]), as shown here. Since

⊢ Γ env

Γ ⊢ x : x

[t -x]

Γ(x) ≡ T

Γ ⊢ Γ(x) ⩽ T
[⩽-refl]

Γ ⊢ x ⩽ T
[⩽-x]

Γ ⊢ x : T
[t -⩽]

x is the smallest type

for term x, the judge-

ment Γ ⊢ t : x conveys

that t should be “some-

thing that evaluates to x,” e.g., t =x or t = if tt then x else x;
similarly, the dependent function type Π(x:bool)x is in-

habited by terms like λx .x or λx .(λy .y) x. Thus, we can
roughly say: if x occurs inT , thenT -typed terms correspond-

ingly use x. This insight will be crucial for our results.

Channels, processes, and their types By [t -chan], a (type-

annotated) term chan()T has type c
io[T]. Rule [t -C] is similar,

for channel instances. By [t -end], process end has type nil.
By [t - ||], both sub-terms of t1 || t2 are π -typed.
By [t -send], send(t1, t2, t3) has type o[S,T ,U], under the

validity constraints of rule [π -o]. Hence, t1 has a channel

type for sending values of type T , and t2 (the term being

sent) must have typeT ; also, t3’s type must beU =Π()U ′
(for

a π -typeU ′
): i.e., t3 is a process thunk, run by applying t3 ().

By [t -recv], recv(t1, t2) has type i[S,T], which is well-formed

under rule [π -i]. Hence, the sub-term t1 must have a channel

type with input U , while t2 must be an abstract process of

type T =Π(x:U ′)T ′
, with T ′ π -type. Crucially, by rule [π -i],

we have Γ ⊢U ⩽U ′
: hence, it is safe to receive a value v from

t1, and apply t2v to get a continuation process that uses v .
We explain subtyping in Fig. 4 later, after a few examples.

Example 3.3. In Ex. 2.2, we have the type assignments:

pinger :Tping =Π(self :c
io[str])Π(pongc:co[co[str]])

o
[
pongc, self , i

[
self ,Π(reply:str)nil

]]
ponger :Tpong =Π(self :c

io[co[str]])

i
[
self , Π(replyTo:c

o[str]) o
[
replyTo, str,Π()nil

]]
sys :Tpp =Π(y:c

io[str])Π(z:c
io[co[str]]) p

[
Tping y z ,Tpong z

]
Notice how Tpp captures the ping/pong composition of sys,

preserving its channel topology: the type-level applications

Verifying Message-Passing Programs with Dependent Behavioural Types PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

⊢ Γ env
⊢ ∅ env

[Γ-∅]
Γ ⊢ T type x < dom(Γ)

⊢ Γ, x:T env

[Γ-x]

Γ ⊢ T type

⊢ Γ env T ∈ {bool, (),⊤,⊥}

Γ ⊢ T type

[T -base]

⊢ Γ env x ∈ dom(Γ)

Γ ⊢ x type

[T -x]

Γ, x:T ⊢ U type

Γ ⊢ Π(x:T)U type

[T -Π]

Γ, x:⊤ ⊢ T type x < fv
–(T)

T < {U | ∃U ′, z ∈X : U ≡ U ′ ∨ z}

Γ ⊢ µx .T type

[T -µ]
Γ ⊢ T type Γ ⊢ U type

Γ ⊢ T ∨U type

[T -∨]

Γ ⊢ T type

Γ ⊢c
io[T] type Γ ⊢c

i[T] type Γ ⊢c
o[T] type

[T -c]

Γ ⊢ T π -type

⊢ Γ env T ∈ {nil, proc}
Γ ⊢ T π -type

[π -base]
Γ ⊢ S ⩽ c

o[To] Γ ⊢ T ⩽ To Γ ⊢ U π -type

Γ ⊢ o[S,T ,Π()U] π -type

[π -o]

Γ ⊢ S ⩽ c
i[Ti] Γ ⊢ Ti ⩽ T

Γ, x:T ⊢ U π -type

Γ ⊢ i
[
S,Π(x:T)U

]
π -type

[π -i]

Γ ⊢ T π -type Γ ⊢ U π -type

Γ ⊢ p[T ,U] π -type

[π -p]
Γ, x:T ⊢ U π -type

Γ ⊢ Π(x:T)U type

[T π -Π]

Γ, x:⊤ ⊢ T π -type x < fv
–(T)

T < {U | ∃U ′, z ∈X : U ≡ U ′ ∨ z}

Γ ⊢ µx .T π -type

[π -µ]

Γ ⊢ T π -type

Γ ⊢ U π -type

Γ ⊢ T ∨U π -type

[π -∨]

Γ ⊢ T ⩽ U

Γ ⊢ T ⩽ ⊤
[⩽-⊤]

Γ ⊢ ⊥ ⩽ T
[⩽-⊥]

T ≡ T ′

Γ ⊢ T ⩽ T ′
[⩽-refl]

Γ ⊢ T ⩽ S Γ ⊢ U ⩽ S

Γ ⊢ T ∨U ⩽ S
[⩽-∨L]

Γ ⊢ S ⩽ T

Γ ⊢ S ⩽ T ∨U
[⩽-∨R]

Γ ⊢ Γ(x) ⩽ T

Γ ⊢ x ⩽ T
[⩽-x]

Γ, x:T ⊢ U ⩽ U ′

Γ ⊢ Π(x:T)U ⩽ Π(x:T)U ′
[⩽-Π]

Γ ⊢ T ⩽ T ′

Γ ⊢ c
io[T] ⩽ c

i[T ′] Γ ⊢ c
i[T] ⩽ c

i[T ′] Γ ⊢ c
io[T ′] ⩽ c

o[T] Γ ⊢ c
o[T ′] ⩽ c

o[T]
[⩽-c]

Γ ⊢ T ⩽ proc
[⩽-proc]

Γ ⊢ S ⩽ S ′ Γ ⊢ T ⩽ T ′ Γ ⊢ U ⩽ U ′

Γ ⊢ o[S,T ,U] ⩽ o[S ′,T ′,U ′]
[⩽-o]

Γ ⊢ T ⩽ T ′ Γ ⊢ U ⩽ U ′

Γ ⊢ i[T ,U] ⩽ i[T ′,U ′]
[⩽-i]

Γ ⊢ T ⩽ T ′ Γ ⊢ U ⩽ U ′

Γ ⊢ p[T ,U] ⩽ p[T ′,U ′]
[⩽-p]

Γ ⊢ t : T

⊢ Γ, x:T env

Γ, x:T ⊢ x : x

[t -x]
⊢ Γ env v ∈ B
Γ ⊢ v : bool

[t -B] ⊢ Γ env

Γ ⊢ () : ()
[t -()] Γ ⊢ t : bool

Γ ⊢ ¬t : bool

[t -¬]

Γ, x:U ⊢ t : T

Γ ⊢ λxU .t : Π(x:U)T
[t -λ] Γ ⊢ t : T Γ ⊢ T ⩽ U

Γ ⊢ t : U
[t -⩽]

Γ ⊢ T ∨U *-type Γ ⊢ t : bool Γ ⊢ t1 : T Γ ⊢ t2 : U

Γ ⊢ if t then t1 else t2 : T ∨U
[t -if]

Γ ⊢ t1 : Π(x:U)T Γ ⊢ t2 : U ′ Γ ⊢ U ′ ⩽ U

Γ ⊢ t1 t2 : T {U ′
/x}

[t -app]
Γ, x:U ⊢ t : U ′ Γ, x:U ⊢ t ′ : T Γ ⊢ U ′ ⩽ U

Γ ⊢ let xU = t in t ′ : T {U ′
/x}

[t -let]

Γ ⊢ c
io[T] type

Γ ⊢ aT : c
io[T]

[t -C]
Γ ⊢ c

io[T] type

Γ ⊢ chan()T : c
io[T]

[t -chan] ⊢ Γ env

Γ ⊢ end : nil
[t -end]

Γ ⊢ p[T ,U] π -type Γ ⊢ t1 : T Γ ⊢ t2 : U

Γ ⊢ t1 || t2 : p[T ,U]
[t - ||]

Γ ⊢ o[S,T ,U] π -type Γ ⊢ t1 : S Γ ⊢ t2 : T Γ ⊢ t3 : U

Γ ⊢ send(t1, t2, t3) : o[S,T ,U]
[t -send]

Γ ⊢ i[S,T] π -type Γ ⊢ t1 : S Γ ⊢ t2 : T

Γ ⊢ recv(t1, t2) : i[S,T]
[t -recv]

Figure 4. Judgements of the λπ⩽ type system (Def. 3.2). The main concurrency-related rules are highlighted.

Tping y z and Tpong z (yielded by rule [t -app], Fig. 4) substi-

tute y and z in Tping and Tpong’s bodies (by Def. 3.1). This is

obtained by leveraging dependent function types, and is key

for combining types/protocols and verifying them (§4).

Example 3.4 (Mobile code). Modern languages and toolkits

for message-passing programs support sending/receiving

mobile code (e.g., [18, 49, 52]). Consider this scenario: a data

analysis server lets its clients send custom code, for on-the-

fly data filtering. In λπ⩽ , the intended behaviour of custom

code can be formalised by a type like Tm below: it describes

an abstract process, taking two input channels i1 / i2, and an

output channel o; it must use i1 / i2 to input integers x / y,

and then it must send one of them along o, recursively.

Tm = Π(i1:c
i[int])Π(i2:c

i[int])Π(o:c
o[int])

µt.i
[
i1,Π(x:int)i

[
i2,Π(y:int)o

[
o, (x ∨ y),Π()t

]]]

By inspecting Tm, we infer that, e.g., Tm-typed terms can-

not be forkbombs; also, “x ∨ y” does not allow to send on

out a value not coming from i1 / i2 (we will formalise these

intuitions in Ex. 4.11). The terms below implement Tm: m1

always sends x received from i1, then recursively calls itself,

swapping i1 / i2; m2 sends the maximum between x and y.

let m1 = λi1 .λi2 .λo .
recv(i1, λx .recv(i2, λ_.send(o, x, λ_.m1 i2 i1 o)))

let m2 = λi1 .λi2 .λo .
recv(i1, λx .recv(i2, λy .)

send(o, (if x >y then x else y), λ_.m2 i1 i2 o))

Below, srv is a data processing server. It takes two chan-

nels: cm and out; it creates two private channels z1 and z2,

uses cm to receive an abstract process p, and runs it, in paral-

lel with two producers (omitted) that send values on z1 / z2:

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Alceste Scalas, Nobuko Yoshida, and Elias Benussi

let srv = λcm.λout .
let z1 =chan() in let z2 =chan() in

recv(cm, λp .
(
p z1 z2 out || prod

1
z1 || prod

2
z2

)
)

The system works correctly if the received code p is m1 or

m2 above — or any instance of Tm. To ensure that srv can

only receive a Tm-typed term on cm, we check its type:

∅ ⊢ srv : Tsrv = Π(cm:c
i[Tm])Π(out:c

o[int]) proc

and this guarantees that, e.g., the parallel composition

send(x, t , λ_.end) || srv x out (client sends t to server, via x)

is typable in Γ only if Γ ⊢ x : c
io[Tm], implying Γ ⊢ t : Tm.

We can replace proc with a more precise type. If U1/U2 are

types of prod
1
/prod

2
, the recv(...) sub-term of srv has type:

T ′
srv
= i

[
cm , Π(p:Tm)p

[
p
[
Tm z1 z2 out , U1 z1

]
, U2 z2

]]
i.e., the server uses cm to receive aTm-typed abstract process
p, and then behaves as Tm (applied to z1, z2, out) composed

in parallel withU1/U2 (applied to z1/z2).

Subtyping, subsumption, and private channels The sub-

typing rules in Fig. 4 are standard (based on F<: [8, 32]) except

the highlighted ones. By rule [⩽-c], subtyping for channel

types is covariant for inputs, and contravariant for outputs,

as expected [61]: intuitively, channels with smaller types can

be used more liberally. Rule [⩽-proc] says that proc is the top
type for π -types. Rules [⩽-o]/[⩽-i]/[⩽-p] say that types for in-

put/output/parallel processes are covariant in all parameters.

As usual, supertyping / subsumption (rule [t -⩽]) caters for

Liskov & Wing’s substitution principle [51]: a smaller object

can replace a larger one. Crucially, in our theory, supertyping

also allows to drop information when typing private channels.

This is shown in Ex. 3.5: via supertyping, we do not precisely

track how private (i.e., bound) channels are used. This in-

formation loss is key to type Turing-powerful λπ⩽ terms with

a non-Turing-complete type language, for the results in §4.

Example 3.5 (Subtyping, binding, and precision loss). Let:
t1 = send(x, 42, λ_.end) || recv(x, λ_.end)
t2 =

(
let z =chan() in send(z, 42, λ_.end)

)
|| recv(x, λ_.end)

T1 = p
[
o
[
x, int,Π()nil

]
, i
[
x,Π(y:int)nil

]]
T2 = p

[
o
[
c

io[int], int,Π()nil
]
, i
[
x,Π(y:int)nil

]]
Letting Γ = x:c

io[int], we have Γ ⊢ x ⩽ c
io[int] and Γ ⊢

T1 ⩽ T2. For t1, we have both Γ ⊢ t1 : T1 and Γ ⊢ t1 : T2

(by [t -⩽]): in the first judgement, T1 precisely captures that

x is used to send/receive an integer; instead, in the second

judgement, T2 is less accurate, and says that some term with

type c
io[int] is used to send, while x is used to receive.

We also have Γ ⊢ t2 : T2; and notably, since z is bound in

the “let...” subterm of t2, it cannot appear in the type: i.e.,

we cannot write a more accurate type for t2. This is due to
rule [t -let] (Fig. 4): since z is bound by let..., its occurrence
in send(...) is typed by a supertype of z that is suitable for

both z and chan() — in this case, c
io[int]. Specifically:

Γ ⊢ c
io[int] ⩽ c

io[int] Γ, z:c
io[int] ⊢ chan() : c

io[int]

Γ, z:c
io[int] ⊢ send(z, 42, λ_.end) : o

[
z, int,Π()nil

]
[t -let]

Γ ⊢ let z =chan() in send(z, 42, λ_.end) : o
[
z, int,Π()nil

] {
c

io[int]/z
}

Typing guarantees that well-typed terms never go wrong.

Theorem 3.6 (Type safety). If Γ ⊢ t : T , then t is safe.

Thm. 3.6 follows by: Γ ⊢ t : T and t → t ′ implies ∃T ′

such that Γ ⊢ t ′ : T ′
— i.e., typed terms only reduce to typed

terms, without (untypable) err subterms. In §4, we study how

T and T ′
are related, and how they constraint t ’s behaviour.

4 Type-Level Model Checking
Our typing discipline guarantees conformance between pro-

cesses and types (Fig. 4), and absence of run-time errors

(Thm. 3.6). However, as seen in §1, our types can describe a

wide range of behaviours, from desirable ones (e.g., formal-

ising a specification), to undesirable ones (e.g., deadlocks);

moreover, complex (and potentially unwanted) behaviours

can arise when λπ⩽ terms are allowed to interact.

To avoid this issue, we might want to check whether a pro-

cess t (possibly consisting of multiple parallel sub-processes)

satisfies a property ϕ in some temporal logic [73]: ϕ could

be, e.g., a safety property □(¬ϕ ′) (“ϕ ′
is never true while

t runs”) or a liveness property ♢ϕ ′
(“t will eventually sat-

isfy ϕ ′
”). However, this problem is undecidable (unless ϕ is

trivial), since λπ⩽ is Turing-powerful even in its productive

fragment (due to recursion and channel creation [7]).

Luckily, our theory allows to: (1) mimic the parallel com-

position of terms by composing their types (as shown in

Ex. 3.3), and (2) mimic the behaviour of processes by giving

a semantics to types (as we show in this section). This means

that we can ensure that a (composition of) typed process(es)

t has a desired safety/liveness property, by model-checking

its type T (that is not Turing-powerful). Moreover, we do

not need to know how t is implemented: we only need to

know that it has typeT . We now illustrate the approach, and

its preconditions (roughly: for the verification of liveness

properties, we need productivity, and use of open variables).

Outline First, we need to surmount a typical obstacle for

behavioural type systems. Ex. 3.5 shows that accurate types

require open terms in their typing environment — but Def. 2.4

works on closed terms; so, observing howT1 in Ex. 3.5 uses x,

we sense that t1 should interact via x — but by Def. 2.4, t1 is
stuck. To trigger communication, we may bind x in t1 with a

channel instance, e.g., t ′
1
= let x =chan() in t1 —but t ′

1
’s type

cannot mention x, hence cannot convey which channel(s) t ′
1

uses. Thus, we develop a type-based analysis in four steps:

(1)we define an over-approximating LTS semantics for typed

λπ⩽ terms with free variables (Def. 4.1); (2) we define an LTS

semantics for types (Def. 4.2); (3) we prove subject transition

and type fidelity (Thm. 4.4, 4.5); (4) using them, we show how

temporal logic judgements on types transfer to processes.

Verifying Message-Passing Programs with Dependent Behavioural Types PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Definition 4.1 (Labelled semantics of open typed terms).
When Γ ⊢ t : T (for any Γ, t ,T), the judgements Γ ⊢ t α

−⇁ t ′

and Γ ⊢ t τ •

−−⇁∗ t ′ are inductively defined in Fig. 5.

Unlike Def. 2.4, Def. 4.1 lets an open term like ¬x re-

duce, by non-deterministically instantiating x to tt or ff;
the assumption Γ ⊢ ¬x : T ensures that x is a boolean.

Rule [SR-→] inherits “concrete” reductions from Def. 2.4: if

t → t ′ is induced by base rule [r], the transition label is

τ [r]. Rules [SR-send]/[SR-recv] send/receive a value/variable w ′

using a (channel-typed) value/variable w . Note that in [SR-

recv], w ′
is any value/variable of type Ti , which is the in-

put type of x (in π -calculus jargon, it is an early semantics

[63]). Rule [SR-Comm] lets processes exchange a payload w ′

via a channel/variablew , recordingw in the transition label.

Rule [SR-x()] “applies” x by instantiating it with any suitably-

typed λy .v (i.e., λy .v must be a function that, when applied

to w , yields a term v{w/y} of type T); it also records x in

the transition label. Rule [SR-λ()] applies a function to a vari-

able x, with the expected substitution. Rule [SR-E] propagates

transitions through contexts, unless labels refer to bound

variables. Finally, Γ ⊢ t τ •

−−⇁∗ t ′ holds when t reaches t ′ via a
finite sequence of internal moves excluding interaction: i.e.,

labelsw(w ′),w ⟨w ′⟩, τ [w], and τ [R-Comm] are forbidden.
Using Def. 4.1 on t1 from Ex. 3.5, we get the transition

Γ ⊢t1
τ [x]
−−−⇁ end || end, and we observe the use of x, as desired.

Type semantics We now equip our types with labelled

transition semantics (Def. 4.2): this is not unusual for behavi-

oural type systems in π -calculus literature [3, 30] — but our

novel use of type variables, and dependent function types,

yields new capabilities, and requires some sophistication.

The type transitions should mimic the semantics of typed

processes. Hence, take T1 and t1 from Ex. 3.5: we want T1 to

reduce, simulating the term reduction Γ ⊢ t1
τ [x]
−−−⇁ end || end.

This suggests that a type like p
[
o
[
x, ...

]
, i
[
x, ...

]]
should

reducewith a communication on x. But considerT2 in Ex. 3.5:

T2 also types t1, hence it should also simulate t1’s reduction —
i.e., a type like p

[
o
[
c

io[int], ...
]
, i
[
x, ...

]]
should reduce, too.

In general, we want p[o[S, ...], i[T , ...]] to reduce if S andT
“might interact”, i.e., they could type a same channel/variable:

we formalise this idea as Γ ⊢ S ▷◁ T in Def. 4.2.

Definition 4.2 (Type semantics). Let S⊓ΓT be the greatest

subtype of S and T in Γ, up-to ≡ (Def. 3.1). The judgement

Γ ⊢S ▷◁T (read “S and T might interact in Γ”) is:
Γ ⊬ S ⊓Γ T ⩽ ⊥

Γ ⊢ S ▷◁ T
[▷◁-c]

A type reduction context E is inductively defined as:

[]
�� o[E,T ,U]

�� o[S, E,U]
�� o[S,T , E] �� i[E,T] �� i[S, E] �� p[E,T]

Judgements Γ ⊢ T
α
−→ T ′

and Γ ⊢ T
τ [∨]
−−−→∗ T ′

are in Fig. 6.

ByDef. 4.2, Γ ⊢ S ▷◁ S ′ holds when S and S ′ have a common

subtype besides ⊥, i.e., they might type a same term in Γ, via

rule [t -⩽]. The judgement Γ ⊢ T
α
−→ T ′

says that T ∨U can

reduce to T or U , firing label τ [∨] . Rule [T→o] reduces an

output type, recording the used channel type S and payload

T in the transition label. Rule [T→i] is similar for input types,

recording the payloadT ′
. We have two communication rules:

• [T→iox] fires when, in p[U ,U ′], there might be an interac-

tion with a type variable x as payload. Note that, by [T→i],

the x sent byU is substituted inU ′′′
, hence it can appear

in its future transitions. The rule yields a transition label

τ [S, S ′], recording which channel types were used;

• [T→io] is similar, but fires if the payloadT is not a variable.

Finally, Γ ⊢ T
τ [∨]
−−−→∗ T ′

holds if T reaches T ′
via a finite

sequence of internal choices τ [∨].

Example 4.3. Take sys from Ex. 2.2, Tpp from Ex. 3.3. Let:

Γ = y:c
io[str] , z:c

io[co[str]]

t = sys y z

T = Tpp y z = p

o
[
z, y, i

[
y,Π(reply:str)nil

]]
,

i
[
z, Π(replyTo:c

o[str]) o
[
replyTo, str,Π()nil

]]
By Def. 3.2, we have Γ ⊢ t : T . By Def. 4.1, we have:

Γ ⊢ t
τ [z]
−−−⇁ τ •

−−⇁∗

(
recv(y, ...) ||

send(y, "Hi!", ...)

)
τ [y]
−−−−⇁ τ •

−−⇁∗

(
end ||
end

)
By Def. 4.2, applying rule [T→iox] twice, we get:

Γ ⊢ T
τ [z,z]
−−−−−→ p


i
[
y,Π(reply:str)nil

]
,

o
[
replyTo, str,Π()nil

] {
y/replyTo

}
τ [y,y]
−−−−−→ p

[
nil,
nil

]
Observe thatT closely mimicks the transitions of t : the type-
level substitution of y in place of replyTo allows to track the

usage of y after its transmission, capturing ponger’s reply to

pinger . This realises our insight: tracking inputs/outputs of

programs, by using variables in their types. Technically, it is

achieved via the dependent function type inside i[..., ...].

Subject transition and type fidelity With the semantics

of Def. 4.1, we prove a result yielding Thm. 3.6 as a corollary.

Theorem 4.4 (Subject transition). Assume Γ ⊢ t : T . If

Γ ⊢ T type, then Γ ⊢ t α
−⇁ t ′ implies Γ ⊢ t ′ : T . Otherwise,

when Γ ⊢ T π -type, we have:

1. Γ ⊢t α
−⇁t ′ with τ •(α) (Fig. 5) implies Γ ⊢t ′ :T ;

2. Γ ⊢t α
−⇁t ′ and α ∈ {x⟨w⟩, x(w),τ [x],τ [R-Comm]} implies one:

a. Γ ⊢ t ′ : T and proc ∈ T ;
b. α = x⟨w⟩ and ∃S,U ,T ′

: Γ ⊢ x : S,w :U , t ′ : T ′
and

Γ ⊢ T
τ [∨]
−−−→∗

S ⟨U ⟩
−−−−→ T ′

;

c. α = x(w) and ∃S,U ,T ′
: Γ ⊢ x : S,w : U , t ′ : T ′

and

Γ ⊢ T
τ [∨]
−−−→∗

S (U)
−−−→ T ′

;

d. α = τ [x] and ∃S, S ′,T ′
: Γ ⊢ x : S, x : S ′, t ′ : T ′

and

Γ ⊢ T
τ [∨]
−−−→∗

τ [S,S ′]
−−−−−→ T ′

;

e. α = τ [R-Comm] and ∃S, S ′,T ′
: {S, S ′} ⊈X, Γ ⊢ t ′ : T ′

and Γ ⊢ T
τ [∨]
−−−→∗

τ [S,S ′]
−−−−−→ T ′

.

Assume Γ ⊢ t : T , with t reducing to t ′: Thm 4.4 says that

when the reduction is caused by the functional fragment of

λπ⩽ (hypothesis Γ ⊢ T type, or case 1), then t ′ has the same

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Alceste Scalas, Nobuko Yoshida, and Elias Benussi

t → t ′ by base rule [r]

Γ ⊢ t
τ [r]
−−−⇁ t ′

[SR-→]
Γ ⊢ ¬x

τ [¬x]
−−−−⇁ tt

Γ ⊢ ¬x
τ [¬x]
−−−−⇁ ff

Γ ⊢ if x then t else t ′ τ [if x]
−−−−−⇁ t

Γ ⊢ if x then t else t ′ τ [if x]
−−−−−⇁ t ′

w,w ′,w ′′ ∈ X∪V

Γ ⊢ send(w,w ′,w ′′)
w ⟨w ′⟩
−−−−−⇁ w ′′ ()

[SR-send]

w,w ′,w ′′ ∈ X∪V Γ ⊢ w : c
i[T] Γ ⊢ w ′

: T

Γ ⊢ recv(w,w ′′)
w (w ′)
−−−−−⇁ w ′′w ′

[SR-recv] Γ ⊢ t
w ⟨w ′⟩
−−−−−⇁ t ′ Γ ⊢ t ′′

w (w ′)
−−−−−⇁ t ′′′

Γ ⊢ t || t ′′
τ [w]
−−−−⇁ t ′ || t ′′′

[SR-Comm]

Γ ⊢ xw : T w ∈ X∪V Γ ⊢ v{w/y} : T

Γ ⊢ xw
τ [x()]
−−−−⇁ v{w/y}

[SR-x()]

Γ ⊢ (λy .t) x
τ [λ()]
−−−−⇁ t{x/y}

[SR-λ()] Γ ⊢ t ′ α
−⇁ t ′′ fv(α)∩bv(E)=∅

Γ ⊢ E[t] α
−⇁ E[t ′]

[SR-E]

Γ ⊢ t τ •

−−⇁∗ t

Γ ⊢ t τ •

−−⇁∗ t ′ Γ ⊢ t ′ α
−⇁ t ′′ τ •(α)

Γ ⊢ t τ •

−−⇁∗ t ′′ where τ •(α) holds iff α ∈ {τ [¬x],τ [if x],τ [x()],τ [λ()],τ [r] | x ∈X, [r], [R-Comm]}

Figure 5. Over-approximating labelled semantics of λπ⩽ terms. We will sometimes use label τ to denote any τ [·]-label above.

Γ ⊢ T ∨U
τ [∨]
−−−→ T

Γ ⊢ T
α
−→ T ′

Γ ⊢ E[T]
α
−→ E[T ′]

T ′ ≡ T Γ ⊢ T
α
−→ U U ≡ U ′

Γ ⊢ T ′ α
−→ U ′ Γ ⊢ o[S,T ,Π()U]

S ⟨T ⟩
−−−−→ U

[T→o]

Γ ⊢ T ′ ⩽ T T ′=T or T ′∈X

Γ ⊢ i
[
S,Π(x:T)U

] S (T ′)
−−−−→ U {T

′
/x}

[T→i] Γ ⊢ U
S ⟨x ⟩
−−−→ U ′ Γ ⊢ U ′′

S ′(x)
−−−→ U ′′′ Γ ⊢ S ▷◁ S ′

Γ ⊢ p[U ,U ′′]
τ [S,S ′]
−−−−−→ p[U ′,U ′′′]

[T→iox]

Γ ⊢ U
S ⟨T ⟩
−−−−→ U ′ Γ ⊢ U ′′

S ′(T ′)
−−−−→ U ′′′ Γ ⊢ S ▷◁ S ′ Γ ⊢ T ⩽ T ′ T <X

Γ ⊢ p[U ,U ′′]
τ [S,S ′]
−−−−−→ p[U ′,U ′′′]

[T→io]

Γ ⊢ T
τ [∨]
−−−→∗ T

Γ ⊢ T
τ [∨]
−−−→∗ T ′ Γ ⊢ T ′

τ [∨]
−−−→ T ′′

Γ ⊢ T
τ [∨]
−−−→∗ T ′′

Figure 6. Semantics of λπ⩽ types. We will sometimes use label τ to denote either τ [∨] or τ [S, S ′] (for some S, S ′).

type T . Instead, if the reduction is caused by input, output

or interaction events, then we observe a corresponding la-

belled transition in the type, possibly after some τ [∨] moves

(cases 2b–2e); the exception is case 2a: if t ′ keeps typeT , then
that T syntactically contains proc, which types a reducing

sub-term of t before and after its reduction (via rule [t -⩽]).

We can also prove the opposite direction of Thm. 4.4: if

typeT interacts, then a typed term t interacts accordingly. This
intuition holds under two conditions, leading to Thm. 4.5:

(c1) we only use productive λπ⩽ terms, i.e., all functions

must be total (always return a value or process when

applied). This means that, e.g., if Γ ⊢ t : o
[
x, int,T ′

]
,

then t will output on x; this excludes cases like t =
if ω then send(x, 42, t ′) else send(x, 43, t ′′) (with ω=
(λy .y y) (λz .z z)). Productivity is obtained with many

methods from literature (e.g., [21, 72]);

(c2) the subjects of input/output/interaction transitions of

T must be type variables: this allows to precisely relate

them to occurrences of (open) variables in t .

Theorem 4.5 (Type fidelity). Within productive λπ⩽ , assume

Γ ⊢ t : T and Γ ⊢ T π -type. Then:

1. Γ ⊢ T
x ⟨U ⟩
−−−−→ T ′

implies ∃w, t ′ : Γ ⊢ w :U , t ′ :T ′
and

Γ ⊢ t τ •

−−⇁∗ x ⟨w ⟩
−−−−⇁ t ′;

2. Γ ⊢ T
x(U)
−−−→ T ′

implies ∀w : if Γ ⊢ w : U , then ∃t ′ :

Γ ⊢ t ′ : T ′
and Γ ⊢ t τ •

−−⇁∗ x(w)
−−−⇁ t ′;

3. Γ ⊢ T
τ [x,x]
−−−−→ T ′

implies ∃t ′ such that Γ ⊢ t ′ : T ′
and

Γ ⊢ t τ •

−−⇁∗ τ [x]
−−−⇁ t ′;

4. Γ ⊢ T
τ [∨]
−−−→ implies either: (a) ∃T ′

: Γ ⊢T
τ [∨]
−−−→T ′

and

Γ ⊢ t : T ′
; or, (b) ∃t ′ : Γ ⊢t α

−⇁t ′ with τ •(α) (Fig. 5) and

Γ ⊢ t ′ : T ; or, (c) ∃T ′
: Γ ⊢T

α
−→T ′

with α , τ [∨].

Items 1–3 of Thm. 4.5 say that if T can input/output/in-

teract, then t can do the same, possibly after a sequence of

τ -steps (without communication, cf. Def. 4.1); the τ -sequence
is finite, since t is productive by hypothesis. By item 4, if T
can make a choice (∨), then t could have already chosen one

option (case (a)), or could choose later (cases (b) or (c)).

Process verification via type verification By exploiting

the correspondence between process / type reductions in

Thm. 4.4 and 4.5, we can transfer (decidable) verification

results from types to processes. To this purpose, we analyse

the labelled transition systems (LTSs) of types and processes

using the linear-time µ-calculus [20, §3]. We chose it for two

reasons: (1) the open term / type semantics (Def. 4.1 / 4.2) are

over-approximating, and a linear-time logic is a natural tool

to ensure that all possible executions (“real” or approximated)

satisfy a formula; and (2) linear-time µ-calculus is decidable
for our types, with minimal restrictions (Lemma 4.7).

Definition 4.6 (Linear-time µ-calculus). Given a set of ac-

tions Act ranged over by α , the linear-time µ-calculus formu-

las are defined as follows (where A is a subset of Act):

Basic formulas: ϕ F Z
�� ¬ϕ �� ϕ1 ∧ ϕ2

�� (α)ϕ �� νZ.ϕ
Derived

formulas

{
⊤

�� ⊥ �� ϕ1 ∨ ϕ2

�� ϕ1 ⇒ ϕ2

�� µZ.ϕ
(A)ϕ

�� (−A)ϕ �� ϕ1 U ϕ2

�� □ϕ �� ♢ϕ
In Def. 4.6, ϕ describes accepted sequences of actions; ϕ

can be a variable Z, negation, conjunction, prefixing (α)ϕ

Verifying Message-Passing Programs with Dependent Behavioural Types PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

(“accept a sequence if it starts with α , and then ϕ holds”), or

greatest fixed point νZ.ϕ. Basic formulas are enough [6, 73]

to derive true/false (accept any/no sequence of actions), dis-

junction, implication, least fixed points µZ.ϕ; (A)ϕ accepts

sequences that start with any α ∈A, then satisfy ϕ; dually,
(−A)ϕ requires α ∈Act\A. We also derive usual temporal

formulas ϕ1 U ϕ2 (“ϕ1 holds, until ϕ2 eventually holds”), □ϕ
(“ϕ is always true”), and ♢ϕ (“ϕ is eventually true”). Given

a process p with LTS of labels Act, a run of p is a finite or

infinite sequence of labels fired along a complete execution

of p; we write p |= ϕ if ϕ accepts all runs of p. (Details: [70])
We can decideϕ on a guarded typeT , as shown in Lemma 4.7.

Here, we instantiate Act (Def. 4.6) as AΓ(T), which is the set

of labels fired along T ’s transitions in Γ, (Def. 4.2); notably,
AΓ(T) is finite and syntactically determined. (Details: [70])

Lemma 4.7. Given Γ, we say that T is guarded iff, for all

π -type subterms µt.U of T , t can occur inU only as subterm

of i[...] or o[...]; then, if T is guarded, T |= ϕ is decidable.

Lemma 4.7 holds since guarded π -types are encodable in
CCS without restriction [53], then in Petri nets [22, §4.1],

for which linear-time µ-calculus is decidable [20]. Notably,
Lemma 4.7 covers infinite-state types (with p[..., ...] under
µt. ...), that type λπ⩽ terms with unbounded parallel subterms.

Now, assuming Γ ⊢ t : T , we can ensure that ϕ holds for

t , by deciding a related formula ϕ ′
onT . We need to take into

account that type semantics approximate process semantics:

(i1) if we do not want t to perform an action on channel x,

we check that T never potentially uses type variable x;

(i2) if we want t to eventually perform an action on chan-

nel x, we need t productive, and check that T eventu-

ally uses x — without doing “imprecise” actions before.

We formalise such intuitions in various cases, in Thm. 4.10;

but first, we need the tools of Def. 4.8 and 4.9.

Definition 4.8. The input / output uses of x by T in Γ are:

input uses: Ui
Γ,T(x) = {S ′(U ′) ∈ AΓ(T) | Γ ⊢ x ⩽ S ′}

output uses: Uo
Γ,T(x) = {S ′⟨U ′⟩ ∈ AΓ(T) | Γ ⊢ x ⩽ S ′}

Definition 4.9. Given a set of type (resp. term) variables Y,
the Y-limited transitions of T (resp. t) in Γ are:

Γ ⊢ T
α
−→ T ′ ∀S,U : α ∈ {S(U), S ⟨U ⟩} implies S ∈Y

T ↑Γ Y
α
−→ T ′ ↑Γ Y

Γ ⊢ t α
−⇁ t ′ ∀w,w ′

: α ∈ {w(w ′),w ⟨w ′⟩} impliesw ∈Y

t ↑Γ Y
α
−⇁ t ′ ↑Γ Y

Theorem4.10. Within productive λπ⩽ , assume Γ ⊢ t : T , with

Γ ⊢ T π -type, proc < T . Also assume, for all i[S,Π(x:U)U ′]

occurring in T , that there is y such that Γ ⊢ y : U holds.
1

1
This implicitly requires Γ ⊢ U type, hence fv(U) ∩ bv(T) = ∅: this

assumption could be relaxed (with a more complicated clause), but offers a

compromise between simplicity and generality, that is sufficient to verify

our examples. Besides this, the existence of y such that Γ ⊢ y : U can

For µ-calculus judgements on T , let Act = AΓ(T), and Aτ ={
τ [S, S ′] ∈AΓ(T)

�� {S, S ′}⊈dom(Γ)
}
. Then, the implications

in Fig. 7 hold.

Assume Γ ⊢ t : T . The sets Ui
Γ,T(x) /U

o
Γ,T(x) in Def. 4.8

contain all transition labels that might be fired by T , when
x is used for input/output by t . The operator ↑Γ {xi }i ∈1..n
(Def. 4.9) limits the observable inputs/outputs ofT /t to those
occurring on channel xi — while other (open) channels can

only reduce by communicating, via τ -actions; i.e., x1, ..., xn
are interfaces to other types/processes, and are “probed” for

verification (this is common in model checking tools).

In Thm. 4.10, item (1) can be seen as a case of intuition (i1)
above: if T never fires a label (□(¬...)) that is a potential

output use of xi (i ∈ 1..n), then t never uses xi for output.

The “potential output use”, by Def. 4.8, is any label S ′⟨U ′⟩

fired by T where S ′ is a supertype of x: this accounts for

“imprecise typing”, discussed in Ex. 3.5. Item (3) of Thm. 4.10

is a case of intuition (i2): to ensure that t eventually outputs

on xi (i ∈ 1..n), we check that T eventually fires a label

x⟨U ⟩; moreover, we check T does not fire any label in Aτ ,
until (U) the output x⟨U ⟩ occurs. The set Aτ contains all

“imprecise” synchronisation labels τ [S, S ′] where either S
or S ′ is not a type variable: we exclude them because, if T
fires one, then we cannot use Thm. 4.5(3) to ensure that t
reduces accordingly; i.e., if we do not exclude Aτ , then t
might deadlock and never perform xi ⟨w⟩ (for anyw). Finally,

item (4) combines the intuitions of both previous cases: we

want to ensure that whenever t receives z on channel x,

then it eventually forwards z through channel y, without

doing other inputs on x before; to this purpose, we check

that whenever T inputs z on a channel S (representing a

potential use of x), then T eventually fires y⟨z⟩ — without

doing potential inputs on x, nor firing any label inAτ , before.

Example 4.11. Take Γ, t ,T in Ex. 4.3. To ensure that t even-

tually uses y to output a message, we check T ↑Γ

{
y

}
|= ϕ,

with ϕ in Fig. 7(3) (right).

Take ponger (Ex. 2.2),Tpong (Ex. 3.3), and Γ = z:c
io[co[str]].

To ensure that the term ponger z is responsive on z, we

check (Tpong z) ↑Γ {z} |= ϕ, with ϕ in Fig. 7(6) (right).

Take T ′
srv

(Ex. 3.4). With an easy adaptation of properties

(5) and (4) in Fig. 7 (right), we can verify that: in all imple-

mentations srv
′
of T ′

srv
, whenever srv

′
receives any mobile

code p (of type Tm) from channel cm, srv
′
becomes reactive

on z1 and z2, picking one input and forwarding it on out.

5 Implementation and Evaluation
We designed λπ⩽ to leverage subtyping and dependent func-

tion types, with a formulation close to (a fragment of) Dotty

(a.k.a. the future Scala 3 programming language), and its

be assumed w.l.o.g.: if Γ ⊢ t : T but ∄y such that Γ ⊢ y : U , we can pick

y
′<dom(Γ), extend Γ as Γ′=Γ, y′:U , and get Γ′ ⊢ y′ : U and Γ′ ⊢ t : T .

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Alceste Scalas, Nobuko Yoshida, and Elias Benussi

(1) Non-usage of x1, . . . , xn : none of x1, . . . , xn is used for output while t runs. (Simple variation: never use x1, . . . , xn for input)

t ↑Γ {xi }i∈1. .n |= □(¬(
∨
i∈1. .n (xi ⟨w ⟩)⊤)) T ↑Γ {xi }i∈1. .n

|= □
(
¬

(∨
i∈1. .n (Uo

Γ,T(xi))⊤
))

(2) Deadlock-freedom modulo x1, . . . , xn : t might only use channels x1, . . . , xn to interact with other processes, and never gets stuck.

t ↑Γ {xi }i∈1. .n |= □
(
(τ)⊤ ∨

∨
i∈1. .n (xi (w) ∪ xi ⟨w ⟩)⊤

)
T ↑Γ {xi }i∈1. .n

|= □(−Aτ)⊤ ∧□
(
(τ)⊤ ∨

∨
i∈1. .n ({xi (U ′), xi ⟨U ′⟩ | any U ′ })⊤

)
(3) Eventual usage of x1, . . . , xn : some xi (i ∈1..n) is used for output, while t runs. (Simple variations: use some xi for input or communication)

t ↑Γ {xi }i∈1. .n |= ♢(
∨
i∈1. .n (xi ⟨w ⟩)⊤) T ↑Γ {xi }i∈1. .n

|= (−Aτ)⊤ U
(∨

i∈1. .n ({xi ⟨U ′⟩ | any U ′ })⊤
)

(4) Forwarding from x to y: whenever some z is received from x, it is eventually forwarded via y, before x is used for input again.

t ↑Γ {x, y } |= □
(
(x(z))⊤⇒

(
(−x(w))⊤ U (y ⟨z⟩)⊤

))
T ↑Γ {x, y } |= □

(
({S (z) |S (z) ∈Ui

Γ,T(x)})⊤⇒

(
(−(Aτ ∪U

i
Γ,T(x)))⊤ U (y ⟨z⟩)⊤

))
(5) Reactiveness on x: t runs forever, and is always eventually able to receive inputs from x (possibly after a finite number of τ -steps).

t ↑Γ {x } |= □
(
(τ)⊤ U (x(w))⊤

)
T ↑Γ {xi } |= □(−Aτ)⊤ ∧□

(
(τ)⊤ ∨ ({x(U ′) | any U ′ })⊤

)
(6) Responsiveness on x: whenever some z is received from x, it is eventually used to send a response, before x is used for input again.

t ↑Γ {x } |= □
(
(x(z))⊤⇒

(
(−x(w))⊤ U (z ⟨w ⟩)⊤

))
T ↑Γ {x } |= □

(
({S (z) |S (z) ∈Ui

Γ,T(x)})⊤⇒

(
(−(Aτ ∪U

i
Γ,T(x)))⊤ U ({z ⟨U ′⟩ | any U ′ })⊤

))
Figure 7. Process verification (Thm. 4.10): the judgement on the left is implied by the companion judgement on the right.

Here,w ranges over V∪X, and we write x⟨w⟩ as shorthand for the (infinite) set of labels {x⟨w⟩ |w ∈V∪X} (and similarly for

x(w)). For brevity, in (4) and (6) we write (α)⊤⇒ ϕ instead of (α)⊤⇒ (α)ϕ (i.e., if we observe α , then ϕ holds afterwards).

foundation D<: [2]. This naturally leads to a three-step im-

plementation strategy: (1) internal embedding of λπ⩽ ; (2) act-

or-based APIs, via syntactic sugar; and (3) compiler plugin

for type-level model checking. The result is a software toolkit

called Effpi, available at: https://alcestes.github.io/effpi

5.1 Implementation
A payoff of the λπ⩽ design is that we can implement it as an

internal embedded domain-specific language (EDSL) in Dotty:

i.e., we can reuse Dotty’s syntax and type system, to define:

(1) typed communication channels, (2) dedicated methods to

render the λπ⩽ concurrency primitives (send, recv, ||, end),
and (3) dedicated classes to render their types (o[...], i[...],
p[...], nil), including the well-formedness and subtyping con-

straints illustrated in Fig. 4. As usual for internal language

embeddings, the Effpi DSL does not directly cause side-

effects: e.g., calling receive(c) {x => P} does not cause an

input from channel c. Instead, the receive method returns

an object of type In[...] (corresponding to i[...] in Def. 3.1),
which describes the act of using c to receive a value v, and
continue as P{v/x}. Such objects are executed by the Effpi
interpreter, according to the λπ⩽ semantics (Def. 2.4).

Effpi programs look like

the code on the right (which is

ponger from Ex. 2.2): they fol-

low the λπ⩽ syntax. Also, types

def ponger(self: T): T1 = {
receive(self) { replyTo =>
send(replyTo, "Hi!") >>
end } }

are rendered isomorphically: the type “x” in λπ⩽ is rendered

as “x.type” in Dotty, and dependent function types become:

Π(x:T)o
[
y, x,T ′

]
⇝ (x:T) => Out[y.type, x.type, T’]

Thus, the Scala compiler can check the program syntax

(§2) and perform type checking (§3), ensuring type safety

(Thm. 3.6). Dotty also supports (local) type inference.

For better usability, Effpi also provides some extensions

over λπ⩽ , like buffered channels, and a sequencing operator

“>>” (see above, and in Fig. 1). Moreover, Effpi simplifies the

definition and composition of types-as-protocols by lever-

aging Dotty’s type aliases. E.g., the type of two parallel

processes sending an Integer on a same channel can be

defined as U (right): no-
tice how T is reused,

passing U’s parameter.

type T[X <: Chan[Int]] = Out[X, Int]
type U[Y <: Chan[Int]] = Par[T[Y], T[Y]]
def f(x: OChan[Int]): U[x.type] = ...

Also notice how the type of f’s argument (x.type) is passed
to U, and then to T: consequently, the type of f expands into

Par[Out[x.type, Int], Out[x.type, Int]].
To guide Effpi’s design, we implemented the full “pay-

ment with audit” use case from the experimental “session”

extension for Akka Typed [41] (cf. §1, code snippet in Fig. 1).

An efficient Effpi interpreter For performance and scalab-

ility reasons, many distributed programming toolkits (such

as Go, Erlang, and Akka) schedule a (potentially very high)

number of logical processes on a limited number of executor

threads (e.g., one per CPU core). We follow a similar ap-

proach for the Effpi interpreter, leveraging the fact that,

in Effpi programs as in λπ⩽ , input/output actions and their

continuations are represented by λ-terms (closures), that can

be easily stored away (e.g., when waiting for an input from a

channel), and executed later (e.g., when the desired input be-

comes available). Thus, we implemented a non-preemptive

scheduling system partly inspired by Akka dispatchers [47],

with a notable difference: in Effpi, processes yield control

(and can be suspended) both when waiting for inputs (as in

Akka), and also when sending outputs; this feature requires

some sophistication in the scheduling system.

Actor-based API On top of the λπ⩽ EDSL, Effpi provides

a simplified actor-based API [25], in a flavour similar to

Akka Typed [49, 50] (i.e., actors have typed mailboxes and

ActorReferences): see Fig. 1. This API models an actor A

with mailbox of type T , with the intuition in Remark 2.3:

https://alcestes.github.io/effpi

Verifying Message-Passing Programs with Dependent Behavioural Types PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

• A is a process with a unique, implicit input channel

m, of type c
i[T] (Def. 3.1). Hence, A can only use m to

receive messages of type T — i.e., m is A’s mailbox;

• A receives T -typed messages by calling read — which

is syntactic sugar for recv(m, . . .) (see Fig. 1, and notice
that the input channel m is left implicit);

• other processes/actors can sendmessages toA through

its ActorReference r — which is just the output end-

point of its channel/mailbox m. The type of r is c
o[T]

(Def. 3.1): it only allows to send messages of type T .

To this purpose, Effpi uses Dotty’s implicit function types

[57]: i.e., type Actor[...] in Fig. 1 hides an input channel.

Type-level model checking The implementation details

discussed thus far cover the λπ⩽ syntax, semantics, and typing

— i.e., §2 and §3. The type-level analysis presented in §4 goes

beyond the capabilities of the Dotty compiler; hence, we

implement it as a Dotty compiler plugin (i.e., a compiler phase

[59]) accessing the typed program AST. The plugin looks for

methods annotated with “@effpi.verifier.verify”:

@effpi.verifier.verify(ϕ)

def f(x: ..., y: ...): T = ...

Such annotations ask to check if a program of type T satisfies
ϕ, which is a conjunction/disjunctions of the properties from

Fig. 7 (left). Note that T can refer to the parameters x,y,... of
f, and it can be either written by programmers, or inferred

by Dotty. Then, the plugin:

1. tries to convert T into a λπ⩽ type T , as per Def. 3.1;

2. checks if T |= ϕ ′
holds — where ϕ ′

is the companion

formula of ϕ in Fig. 7 (right). This step uses the mCRL2

model checker [23]: we encode T into an mCRL2 pro-

cess,
2
and check if ϕ ′

holds;

3. returns an error (located at the code annotation) if

steps 1 or 2 fail. Otherwise, the compilation proceeds.

When compilation succeeds, any program of return type T
(including f above) enjoys the property ϕ at run-time, by

Thm. 4.10. This works both when f is implemented, and

when it is an unimplemented stub (i.e., when f is defined as

“???” inDotty). This allows to compose the types/protocols of

multiple services, and verify their interactions, even without

their full implementation. E.g., consider Ex. 2.2, 3.3, and 4.11:

a programmer implementing ponger (code above) in Effpi
can (a) annotate the method ponger to verify that it is re-

sponsive (Fig. 7(6)), and/or (b) annotate an unimplemented

stub def f’(...): T’ = ??? with type T’ matching

Tpp (Ex. 3.3), to verify that if ponger interacts with any im-

plementation of type Tping , then ponger’s self channel is

used for output (Fig. 7(3)). Also, a programmer can annotate

payment (Fig. 1) to verify that it is reactive and responsive on

2
To obtain an mCRL2 encoding ofT with semantics adhering to Def. 4.2, we

use the encoding into CCS (without restriction) mentioned after Lemma 4.7.

its (implicit) mailbox, and Accepts payments after notifying

on aud (with a variation of properties (5), (4) in Fig. 7, right).

Known limitations The implementation of our verifica-

tion approach, outlined above, has three main limitations.

1. It does not check productivity of annotated code: such

checks are unsupported in Dotty, and in most program-

ming languages. Hence, programmers must ensure

that all functions invoked from their Effpi code even-
tually return a value — otherwise, liveness properties

might not hold at run-time (cf. condition (c1) in §4).

2. It does not verify processes with unbounded parallel

components (i.e., with parallel composition under re-

cursion);
3
hence, it rejects types having p[..., ...] under

µt. This does not impact the examples in this paper.

3. It uses iso-recursive types [60, Ch. 21] because, unlike

λπ⩽ (Def. 3.2), Dotty does not have equi-recursive types.

Limitations 1 and 3 might be avoided by implementing λπ⩽
as a new programming language. However, our Dotty em-

bedding is simpler, and lets Effpi programs access methods

and data from any library on the JVM: e.g., Effpi actors/pro-
cesses can communicate over a network (via Akka Remoting

[48]), and with Akka Typed actors.

5.2 Evaluation
From §5.1, two factors can hamper Effpi: (1) the run-time

impact of its interpreter (speed and memory usage); (2) the

verification time of the properties in Fig. 7. We evaluate both.

Run-time benchmarks We adopted a set of benchmarks

from the Savina suite [31], with diverse interaction patterns:

• chameneos: n actors (“chameneos”) connect to a central

broker, who picks pairs and sends them their respective

ActorReferences, so they can interact peer-to-peer [34];

• counting: actor A sends n numbers to B, who adds them;

• fork-join — creation (FJ-C): creation of n new actors, who

signal their readiness to interact;

• fork-join — throughput (FJ-T): creation of n new actors,

and transmission of a sequence of messages to each.

• ping-pong: n pairs of actors exchange requests-responses;

• ring: n actors, connected in a ring, pass each other a token;

• streaming ring: similar to ring, but passingm tokens con-

secutively (i.e., at mostm actors can be active at once).

For all benchmarks, we performed two measurements:

• performance vs. size: how long it takes for the benchmark

to complete, depending on the size (i.e., the number of

actors, or the number of messages being sent/received);

• memory vs. size: how many times the JVM garbage col-

lector runs, depending on the size of the benchmark —

and also the maximum memory used before collection.

3
This is because mCRL2 checks formulas of the branching-time µ-calculus,
on finite-state systems. We are not aware of model checkers focused on the

linear-time µ-calculus, and supporting infinite-state systems.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Alceste Scalas, Nobuko Yoshida, and Elias Benussi

100 101 102 103 104 105 106

Chameneos: num of chameneos

103

Time (ms)
Akka Typed

Effpi with channel FSM

Effpi default

102

103

Max GC memory (MB)

101 103 105
100

101

Number of GC calls

102 103 104 105 106 107

Counting: nums to add

100

101

102

103

104

Time (ms)
Akka Typed

Effpi with channel FSM

Effpi default

102

103

Max GC memory (MB)

105 106 107
100

101

102
Number of GC calls

100 101 102 103 104 105 106 107

FJ-C: num of processes

100

101

102

103

104

Time (ms)
Akka Typed

Effpi with channel FSM

Effpi default

102

103

Max GC memory (MB)

104 105 106
100

101

102 Number of GC calls

101 102 103 104 105

FJ-T: num of processes

100

101

102

103

104

Time (ms)
Akka Typed

Effpi with channel FSM

Effpi default

102

103
Max GC memory (MB)

104 105
100

101 Number of GC calls

101 102 103 104 105

Ping-pong: num of pairs

101

102

103

104

Time (ms)
Akka Typed

Effpi with channel FSM

Effpi default

102

103 Max GC memory (MB)

101 102 103 104 105
100

101
Number of GC calls

101 102 103 104 105

Ring: num of members

102

103

104

105
Time (ms)

Akka Typed

Effpi with channel FSM

Effpi default

102

6 × 101

2 × 102
3 × 102 Max GC memory (MB)

101 102 103 104 105
100

2 × 100
3 × 100
4 × 100

Number of GC calls

101 102 103 104 105

Streaming ring: num of members

103

104

105
Time (ms)

Akka Typed

Effpi with channel FSM

Effpi default

102

103
Max GC memory (MB)

101 102 103 104 105
100

101

Number of GC calls

Figure 8. Effpi: mean execution time vs. size (left column,

10 runs, low is better), andmemory vs. size (right). Some plots

end early (e.g., chameneos+Akka) due to out-of-memory

crashes; memory use is plotted when GC runs at least once.

(4×Intel i7@3.6GHz, Dotty 0.9.0-RC1, Scala 2.12.7, Akka 2.5.17, 4GB max heap)

The results are in Fig. 8: we compare two instances of

the Effpi runtime (with two scheduling policies: “default”

and “channel FSM”) against Akka, with default setup. Our

approach appears viable: Effpi is a research prototype, and

still, its performance is not too far from Akka. The negative

exception is “chameneos” (Effpi is ∼2× slower); the positive

exceptions are fork-join throughput (Effpi is ∼2× faster),

and the ring variants (Akka has exponential slowdown).

Model checking benchmarks We evaluated the “extreme

cases”: the time needed to verify formulas in Fig. 7 on proto-

cols with a large number of states — obtained, e.g., by enlar-

ging the examples in the paper (e.g., composingmany parallel

ping-pong pairs), aiming at state space explosion. The results

are in Fig. 9. Our model checking approach appears viable: it

can provide (quasi)real-time verification results, suitable for

interactive error reporting on an IDE. Still, model checking

performance depends on the size of the model, and on the

formula being verified. As expected, our measurements show

that verification becomes slower when models are expanded

by adding more parallel components, and thus enlarging the

state space; they also highlighting that some properties (e.g.,

our mCRL2 translations of ‘forwarding” and “responsive”)

are particularly sensitive to the model size.

6 Conclusion and Related Work
Wepresented a new approach to developingmessage-passing

programs, and verifying their run-time properties. Its corner-

stone is a new blend of behavioural+dependent function types,

enabling program verification via type-level model checking.

Behavioural types with LTS semantics have been studied

in many works [3]: the idea dates back to [56] (for Concur-

rent ML); type-based verification of temporal logic properties

was addressed in [29, 30] (for the π -calculus); recent applic-
ations include, e.g., the verification of Go programs [44, 45].

Our key insight is to infuse dependent function types, in

order to (1) connect a type variable x to a process variable

x, and (2) gain a form of type-level substitution (Def. 3.1).

Item (2), in particular, is not present in previous work; we

take advantage of it to compose protocols (Ex. 3.3) and pre-

cisely track channel passing and use (Ex. 4.3). Thus, we can

verify safety and liveness properties (Fig. 7) while supporting:

(1) channel passing, thus covering a core pattern of actor–

based programming (Ex. 2.2, Remark 2.3, Ex. 4.11, Fig. 1), and

(2) higher-order processes that send/receive mobile code,

thus covering an important feature of modern programming

toolkits (Ex. 3.4, 4.11). Further, our theory is designed for

language embedding: we implemented it in Dotty, and our

evaluation supports the viability of the approach (§5).

A form of type/channel dependency related to ours is in

[24, 78, 79]: their types depend on process channels, and they

check if a process might use a channel x — but cannot say if,

when or how x is used, nor verify behavioural properties.

Verifying Message-Passing Programs with Dependent Behavioural Types PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

states deadlock-free ev-usage forwarding non-usage reactive responsive

Pay & audit + 8 clients 3328 true (0.05± 1.38%) true (0.11± 0.92%) false (6.26± 4.16%) false (0.02± 2.66%) true (1.01± 3.95%) true (15.40± 6.57%)

Pay & audit + 10 clients 13312 true (0.06± 1.65%) true (0.19± 1.07%) false (21.90± 11.19%) false (0.02± 5.55%) true (0.96± 13.22%) true (73.37± 8.28%)

Pay & audit + 12 clients 53248 true (0.07± 1.17%) true (0.23± 1.05%) false (98.72± 12.28%) false (0.02± 2.78%) true (0.99± 2.89%) true (345.22± 8.72%)

Dining philos. (4, deadlock) 4096 false (0.16± 1.41%) true (0.02± 2.02%) false (1.04± 9.84%) false (0.02± 3.55%) false (2.01± 4.79%) false (1.06± 19.65%)

Dining philos. (4, no deadlock) 4096 true (0.16± 0.70%) true (0.02± 2.33%) false (1.19± 28.13%) false (0.02± 1.47%) false (1.91± 14.08%) false (1.07± 19.19%)

Dining philos. (5, deadlock) 32768 false (0.54± 0.80%) true (0.03± 2.46%) false (4.58± 10.54%) false (0.02± 3.55%) false (5.10± 5.78%) false (3.05± 5.11%)

Dining philos. (5, no deadlock) 32768 true (0.55± 1.85%) true (0.03± 1.58%) false (3.05± 4.85%) false (0.02± 3.04%) false (4.21± 8.29%) false (3.01± 1.19%)

Dining philos. (6, deadlock) 262144 false (2.35± 0.51%) true (0.03± 0.87%) false (13.61± 14.39%) false (0.03± 4.22%) false (16.58± 8.22%) false (10.72± 3.88%)

Dining philos. (6, no deadlock) 262144 true (2.37± 0.61%) true (0.03± 2.93%) false (9.20± 5.63%) false (0.03± 3.76%) false (17.28± 6.11%) false (6.36± 6.25%)

Ping-pong (6 pairs) 4096 true (0.05± 1.68%) true (0.01± 3.92%) false (0.95± 14.43%) false (0.01± 16.42%) false (0.98± 6.02%) false (0.98± 5.34%)

Ping-pong (6 pairs, responsive) 46656 true (0.26± 2.65%) true (0.02± 1.70%) false (1.05± 13.51%) false (0.02± 1.39%) false (1.00± 5.47%) true (1.98± 5.09%)

Ping-pong (8 pairs) 65536 true (0.23± 0.82%) true (0.01± 3.07%) false (2.00± 1.25%) false (0.01± 3.27%) false (2.01± 2.48%) false (1.53± 30.27%)

Ping-pong (8 pairs, responsive) 1679616 true (1.60± 1.90%) true (0.03± 2.43%) false (6.89± 3.14%) false (0.03± 5.62%) false (4.58± 9.96%) true (9.39± 6.48%)

Ping-pong (10 pairs) 1048576 true (2.40± 1.63%) true (0.02± 2.35%) false (8.63± 13.49%) false (0.01± 1.69%) false (9.53± 10.27%) false (1.99± 2.69%)

Ping-pong (10 pairs, responsive) >2×10
6

true (8.74± 10.83%) true (0.04± 2.66%) false (17.00± 1.62%) false (0.03± 1.39%) false (23.49± 4.76%) true (50.97± 5.80%)

Ring (10 elements) 2048 true (0.01± 3.58%) true (0.01± 3.82%) true (11.34± 1.48%) false (0.01± 2.44%) true (7.81± 0.35%) false (1.00± 1.10%)

Ring (15 elements) 65536 true (0.02± 1.57%) true (0.02± 1.56%) true (562.48± 4.72%) false (0.01± 1.79%) true (407.47± 7.13%) false (108.61± 3.10%)

Ring (10 elements, 3 tokens) 4096 true (0.06± 3.14%) true (0.01± 1.72%) true (23.79± 9.10%) false (0.01± 4.07%) true (15.53± 0.38%) false (1.99± 8.18%)

Ring (15 elements, 3 tokens) 131072 true (0.39± 0.60%) true (0.01± 1.44%) true (1146.57± 2.11%) false (0.01± 2.19%) true (827.58± 1.00%) false (2.01± 7.92%)

Figure 9. Behavioural property verification: outcome (true/false) and average time (seconds± std. dev.). The number of states

is approximated “>2×10
6
” when the LTS is too big to fit in memory. (4×Intel i7@ 3.60GHz, 16 GB RAM, mCRL2 201808.0, 30 runs)

Various π -calculus type systems specialise on accurate

(dead)lock-freedom analysis, e.g., [36–39, 58]. [13] type-checks

actors with unordered mailboxes, carrying messages of dif-

ferent types; it ensures deadlock-freedom, and (assuming

termination) message consumption. Unlike ours, the works

above do not support an extensible set of µ-calculus proper-
ties (Fig. 7), nor address higher-order processes. Although

our actors are similar to Akka Typed (with single-type mail-

boxes), we conjecture that our types also support actors like

[13], with decidable verification (by Lemma. 4.7).

Our protocols-as-types are related to session types [11,

26, 27, 69], and their combination with value-dependent

and indexed types [10, 14, 75–77]; session types have in-

spired various implementations [3], also in Scala [65–68].

Our theory has a different design, yielding different fea-

tures. On the one hand, we do not have an explicit external

choice construct (we plan to integrate it via match types

[17], but leave it as future work); on the other hand, we

can verify liveness properties across interleaved use of mul-

tiple channels (more liberally than session types [12]), and

we are not limited to linear/confluent protocols: e.g., T =

p
[
p
[
o
[
x, y,T

]
, o

[
x, z,T ′

]]
, i
[
x,Π(z′:cio[int])U

]]
types parallel

processes with a race on channel x; we can verify such

processes, capturing that either y or z may replace z
′
in

theU -typed continuation. This covers locking/mutex proto-

cols, allowing, e.g., to implement and verify Dijkstra’s dining

philosopher problem (mentioned in Fig. 9). [4] extends lin-

ear logic-based session types with shared channels: it adds

non-determinism, weakening deadlock-freedom guarantees.

Outside the realm of process calculi, various works tackle

the problem of protocol-aware verification, e.g., [40, 71, 74].

We share similar goals, although we adopt a different the-

ory and design, leading to different tradeoffs: crucially, the

works above develop new languages, or build upon a power-

ful dependently-typed host language (Coq) with interactive

proofs, to support rich representations of protocol state. We,

instead, aim at Dotty embedding (with limited type depend-

encies) and automated verification of process properties (via

type-level model checking); hence, our protocols and logic

are action-based, to ensure decidability (Lemma 4.7). Our ap-

proach covers many stateful protocols (e.g., locking/mutex,

mentioned above); but beyond this, a finer type-level rep-

resentation of state may make model checking undecidable

[19], thus requiring decidability conditions, or novel heurist-

ic/interactive proof techniques. This topic can foster exciting

future work, and a cross-pollination of results between the

realms of protocol-aware verification, and process calculi.

Future work We will study λπ⩽ embeddings in other pro-

gramming languages — although only Dotty provides both

subtyping and dependent function types. We will extend the

supported properties in Fig. 7, and study how to improve

their verification, along three directions: 1. increase speed,

trying more mCRL2 options, and tools like LTSmin [35];

2. support infinite-state systems, trying tools like Bfc [33]

(that does not cover the linear-time µ-calculus in Def. 4.6,

but is used e.g. in [15] to verify safety properties of actor pro-

grams); 3. introduce assume-guarantee reasoning for type–

level model checking, inspired by [62]. The Effpi runtime

system can be optimised: we will attempt its integration with

Akka Dispatchers [47], and explore other (non-preemptive)

scheduling strategies, e.g., work stealing [1, 5].

Acknowledgements Thanks to the anonymous reviewers

for their remarks, to Sung-Shik Jongmans for his comments,

and to Raymond Hu for testing the artifact. Work partially

supported by EPSRC projects EP/K034413/1, EP/K011715/1,

EP/L00058X/1, EP/N027833/1, EP/N028201/1.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Alceste Scalas, Nobuko Yoshida, and Elias Benussi

References
[1] Umut A. Acar, Arthur Chargueraud, andMike Rainey. 2013. Scheduling

Parallel Programs by Work Stealing with Private Deques. In PPoPP.

https://doi.org/10.1145/2442516.2442538
[2] Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro

Stucki. 2016. The Essence of Dependent Object Types. In A List of

Successes That Can Change the World - Essays Dedicated to Philip

Wadler on the Occasion of His 60th Birthday. https://doi.org/10.1007/
978-3-319-30936-1_14

[3] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Gi-

useppe Castagna, Pierre-Malo Deniélou, Simon J. Gay, Nils Gesbert,

Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco Mar-

tins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nicholas

Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. 2017.

Behavioral Types in Programming Languages. Foundations and Trends

in Programming Languages 3(2-3) (2017). https://doi.org/10.1561/
2500000031

[4] Stephanie Balzer and Frank Pfenning. 2017. Manifest Sharing with

Session Types. Proc. ACM Program. Lang. 1, ICFP, Article 37 (2017).

https://doi.org/10.1145/3110281
[5] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Mul-

tithreaded Computations by Work Stealing. J. ACM 46, 5 (1999), 29.

https://doi.org/10.1145/324133.324234
[6] Julian Bradfield and Colin Stirling. 2007. Modal µ-calculi. In Hand-

book of Modal Logic. Elsevier. https://doi.org/10.1016/S1570-2464(07)
80015-2

[7] Nadia Busi, Maurizio Gabbrielli, and Gianluigi Zavattaro. 2009. On

the expressive power of recursion, replication and iteration in process

calculi. Mathematical Structures in Computer Science 19, 6 (2009), 1191–

1222. https://doi.org/10.1017/S096012950999017X
[8] L. Cardelli, S. Martini, J.C. Mitchell, and A. Scedrov. 1994. An Extension

of System F with Subtyping. Information and Computation 109, 1 (1994).

https://doi.org/10.1006/inco.1994.1013
[9] Luca Cardelli and Peter Wegner. 1985. On Understanding Types, Data

Abstraction, and Polymorphism. Comput. Surveys 17, 4 (1985), 53.

https://doi.org/10.1145/6041.6042
[10] David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng,

and Nobuko Yoshida. 2019. Distributed Programming Using Role-

parametric Session Types in Go: Statically-typed Endpoint APIs for

Dynamically-instantiated Communication Structures. Proc. ACM Pro-

gram. Lang. 3, POPL, Article 29 (2019). https://doi.org/10.1145/3290342
[11] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and

Nobuko Yoshida. 2015. A Gentle Introduction to Multiparty Asyn-

chronous Session Types. In Formal Methods for Multicore Programming.

https://doi.org/10.1007/978-3-319-18941-3_4
[12] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and

Luca Padovani. 2015. Global Progress for Dynamically Interleaved

Multiparty Sessions. MSCS 760 (2015). https://doi.org/10.1017/
S0960129514000188

[13] Ugo de’Liguoro and Luca Padovani. 2018. Mailbox Types for Unordered

Interactions. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2018.15
[14] Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond

Hu. 2012. Parameterised Multiparty Session Types. Logical Methods in

Computer Science 8, 4 (2012). https://doi.org/10.2168/LMCS-8(4:6)2012
[15] Emanuele D’Osualdo, Jonathan Kochems, and C. H. Luke Ong. 2013.

Automatic Verification of Erlang-Style Concurrency. In Static Analysis.

Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38856-9_24
[16] Dotty developers. 2019. Dotty documentation: dependent func-

tion types. https://dotty.epfl.ch/docs/reference/new-types/
dependent-function-types.html.

[17] Dotty developers. 2019. Dotty documentation: match types. http:
//dotty.epfl.ch/docs/reference/new-types/match-types.html.

[18] Ericsson. 2019. The Erlang/OTP Programming Language and Toolkit.

http://erlang.org/.

[19] Javier Esparza. 1994. On the decidability of model checking for several

µ-calculi and Petri nets. In Trees in Algebra and Programming — CAAP.

https://doi.org/10.1007/BFb0017477
[20] Javier Esparza. 1997. Decidability of model checking for infinite-state

concurrent systems. Acta Informatica 34, 2 (1997). https://doi.org/10.
1007/s002360050074

[21] Jürgen Giesl, Matthias Raffelsieper, Peter Schneider-Kamp, Stephan

Swiderski, and René Thiemann. 2011. Automated Termination Proofs

for Haskell by Term Rewriting. TOPLAS 33, 2, Article 7 (2011). https:
//doi.org/10.1145/1890028.1890030

[22] Ursula Goltz. 1990. CCS and Petri nets. In Semantics of Systems of

Concurrent Processes. https://doi.org/10.1007/3-540-53479-2_14
[23] Jan Friso Groote and Mohammad Reza Mousavi. 2014. Modeling and

Analysis of Communicating Systems. The MIT Press.

[24] Matthew Hennessy, Julian Rathke, and Nobuko Yoshida. 2005. safeDpi:

a language for controlling mobile code. Acta Informatica 42, 4-5 (2005).

https://doi.org/10.1007/s00236-005-0178-y
[25] Carl Hewitt, Peter Bishop, Irene Greif, Brian Smith, Todd Matson, and

Richard Steiger. 1973. Actor Induction and Meta-evaluation. In POPL.

https://doi.org/10.1145/512927.512942
[26] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR. https:

//doi.org/10.1007/3-540-57208-2_35
[27] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty

asynchronous session types. In POPL. https://doi.org/10.1145/1328438.
1328472 Journal version in [28].

[28] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty

Asynchronous Session Types. J. ACM 63, 1, Article 9 (2016). https:
//doi.org/10.1145/2827695

[29] Atsushi Igarashi and Naoki Kobayashi. 2001. A Generic Type System

for the Pi-calculus. In POPL. https://doi.org/10.1145/360204.360215
[30] Atsushi Igarashi and Naoki Kobayashi. 2004. A generic type sys-

tem for the π -calculus. TCS 311, 1 (2004). https://doi.org/10.1016/
S0304-3975(03)00325-6

[31] Shams M. Imam and Vivek Sarkar. 2014. Savina — An Actor Bench-

mark Suite: Enabling Empirical Evaluation of Actor Libraries (AGERE!).

https://doi.org/10.1145/2687357.2687368
[32] Alan Jeffrey. 2001. A Symbolic Labelled Transition System for Coin-

ductive Subtyping of Fµ< Types. In LICS. https://doi.org/10.1109/LICS.
2001.932508

[33] Alexander Kaiser, Daniel Kroening, and Thomas Wahl. 2015. Bfc - A

Widening Approach to Multi-Threaded Program Verification. http:
//www.cprover.org/bfc/.

[34] Claude Kaiser and Jean-Francois Pradat-Peyre. 2003. Chameneos, a

concurrency game for Java, Ada and others. In ACS/IEEE Int. Conf. on

Computer Systems and Applications. Book of abstracts. https://doi.org/
10.1109/AICCSA.2003.1227495

[35] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan

Blom, and Tom van Dijk. 2015. LTSmin: High-Performance Language-

Independent Model Checking. In TACAS. https://doi.org/10.1007/
978-3-662-46681-0_61

[36] Naoki Kobayashi. 1998. A Partially Deadlock-Free Typed Process

Calculus. TOPLAS 20, 2 (1998). https://doi.org/10.1145/276393.278524
[37] Naoki Kobayashi. 2006. A New Type System for Deadlock-Free Pro-

cesses. In CONCUR. https://doi.org/10.1007/11817949_16
[38] Naoki Kobayashi and Cosimo Laneve. 2017. Deadlock analysis of

unbounded process networks. Information and Computation 252 (2017).

https://doi.org/10.1016/j.ic.2016.03.004
[39] Naoki Kobayashi and Davide Sangiorgi. 2010. A hybrid type system

for lock-freedom of mobile processes. TOPLAS 32, 5 (2010). https:
//doi.org/10.1145/1745312.1745313

[40] Morten Krogh-Jespersen, Amin Timany, and Lars Birkedal Marit

Edna Ohlenbusch. 2018. Aneris: A Logic for Node-Local, Modu-

lar Reasoning of Distributed Systems. https://iris-project.org/pdfs/
2019-aneris-submission.pdf. Unpublished draft.

https://doi.org/10.1145/2442516.2442538
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.1145/3110281
https://doi.org/10.1145/324133.324234
https://doi.org/10.1016/S1570-2464(07)80015-2
https://doi.org/10.1016/S1570-2464(07)80015-2
https://doi.org/10.1017/S096012950999017X
https://doi.org/10.1006/inco.1994.1013
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/3290342
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.4230/LIPIcs.ECOOP.2018.15
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.1007/978-3-642-38856-9_24
https://dotty.epfl.ch/docs/reference/new-types/dependent-function-types.html
https://dotty.epfl.ch/docs/reference/new-types/dependent-function-types.html
http://dotty.epfl.ch/docs/reference/new-types/match-types.html
http://dotty.epfl.ch/docs/reference/new-types/match-types.html
http://erlang.org/
https://doi.org/10.1007/BFb0017477
https://doi.org/10.1007/s002360050074
https://doi.org/10.1007/s002360050074
https://doi.org/10.1145/1890028.1890030
https://doi.org/10.1145/1890028.1890030
https://doi.org/10.1007/3-540-53479-2_14
https://doi.org/10.1007/s00236-005-0178-y
https://doi.org/10.1145/512927.512942
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695
https://doi.org/10.1145/360204.360215
https://doi.org/10.1016/S0304-3975(03)00325-6
https://doi.org/10.1016/S0304-3975(03)00325-6
https://doi.org/10.1145/2687357.2687368
https://doi.org/10.1109/LICS.2001.932508
https://doi.org/10.1109/LICS.2001.932508
http://www.cprover.org/bfc/
http://www.cprover.org/bfc/
https://doi.org/10.1109/AICCSA.2003.1227495
https://doi.org/10.1109/AICCSA.2003.1227495
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1145/276393.278524
https://doi.org/10.1007/11817949_16
https://doi.org/10.1016/j.ic.2016.03.004
https://doi.org/10.1145/1745312.1745313
https://doi.org/10.1145/1745312.1745313
https://iris-project.org/pdfs/2019-aneris-submission.pdf
https://iris-project.org/pdfs/2019-aneris-submission.pdf

Verifying Message-Passing Programs with Dependent Behavioural Types PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

[41] Roland Kuhn. 2017. Akka Typed Session. https://github.com/rkuhn/
akka-typed-session.

[42] Roland Kuhn. 2017. Akka Typed Session: audit example. https://github.
com/rkuhn/akka-typed-session/blob/master/src/test/scala/com/
rolandkuhn/akka_typed_session/auditdemo/ProcessBased.scala.

[43] Leslie Lamport. 1977. Proving the Correctness of Multiprocess Pro-

grams. IEEE Transactions on Software Engineering SE-3, 2 (March 1977).

https://doi.org/10.1109/TSE.1977.229904
[44] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida.

2017. Fencing off go: liveness and safety for channel-based program-

ming. In POPL. https://doi.org/10.1145/3093333.3009847
[45] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida.

2018. A static verification framework for message passing in Go using

behavioural types. In ICSE. https://doi.org/10.1145/3180155.3180157
[46] Lightbend, Inc. 2017. Akka Typed: Protocols. https://akka.io/blog/

2017/05/12/typed-protocols.
[47] Lightbend, Inc. 2019. Akka Dispatchers documentation. https:

//doc.akka.io/docs/akka/2.5/dispatchers.html.
[48] Lightbend, Inc. 2019. Akka remoting documentation. https://doc.akka.

io/docs/akka/2.5/remoting.html.
[49] Lightbend, Inc. 2019. The Akka toolkit and runtime. http://akka.io/.
[50] Lightbend, Inc. 2019. Akka Typed documentation. https://doc.akka.

io/docs/akka/2.5/typed/index.html.
[51] Barbara H. Liskov and JeannetteM.Wing. 1994. A Behavioral Notion of

Subtyping. TOPLAS 16, 6 (1994). https://doi.org/10.1145/197320.197383
[52] Heather Miller, Philipp Haller, and Martin Odersky. 2014. Spores: A

Type-Based Foundation for Closures in the Age of Concurrency and

Distribution. In ECOOP. https://doi.org/10.1007/978-3-662-44202-9_13
[53] Robin Milner. 1989. Communication and Concurrency. Prentice-Hall,

Inc.

[54] RobinMilner. 1999. Communicating andMobile Systems: the π -Calculus.
Cambridge University Press.

[55] Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of

Mobile Processes, Parts I and II. Information and Computation 100, 1

(1992). https://doi.org/10.1016/0890-5401(92)90008-4
[56] Hanne Riis Nielson and Flemming Nielson. 1994. Higher-order Con-

current Programs with Finite Communication Topology (Extended

Abstract). In POPL. https://doi.org/10.1145/174675.174538
[57] Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis,

Heather Miller, and Sandro Stucki. 2017. Simplicitly: Foundations and

Applications of Implicit Function Types. Proc. ACM Program. Lang. 2,

POPL, Article 42 (2017). https://doi.org/10.1145/3158130
[58] Luca Padovani. 2014. Deadlock and lock freedom in the linear π -

calculus. In CSL-LICS. https://doi.org/10.1145/2603088.2603116
[59] Dmitry Petrashko, Ondřej Lhoták, and Martin Odersky. 2017.

Miniphases: Compilation Using Modular and Efficient Tree Trans-

formations. In PLDI. https://doi.org/10.1145/3062341.3062346
[60] Benjamin C. Pierce. 2002. Types and programming languages. MIT

Press.

[61] Benjamin C. Pierce and Davide Sangiorgi. 1996. Typing and Subtyping

for Mobile Processes. Mathematical Structures in Computer Science 6,

5 (1996).

[62] Sriram K. Rajamani and Jakob Rehof. 2001. A Behavioral Module Sys-

tem for the Pi-Calculus. In SAS. https://doi.org/10.1007/3-540-47764-0_

22
[63] Davide Sangiorgi and David Walker. 2001. The π -calculus: a Theory of

Mobile Processes. Cambridge University Press.

[64] Alceste Scalas, Elias Benussi, and Nobuko Yoshida. 2019. Effpi website.

https://alcestes.github.io/effpi.
[65] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida.

2017. A Linear Decomposition of Multiparty Sessions for Safe Distrib-

uted Programming. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.
2017.24

[66] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida.

2017. A Linear Decomposition of Multiparty Sessions for Safe Dis-

tributed Programming (Artifact). Dagstuhl Artifacts Series 3, 1 (2017).

https://doi.org/10.4230/DARTS.3.2.3
[67] Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Pro-

gramming in Scala. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.
2016.21

[68] Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Pro-

gramming in Scala (Artifact). Dagstuhl Artifacts Series 2, 1 (2016).

https://doi.org/10.4230/DARTS.2.1.11
[69] Alceste Scalas and Nobuko Yoshida. 2019. Less is More: Multiparty

Session Types Revisited. Proc. ACM Program. Lang. 3, POPL, Article

30 (Jan. 2019). https://doi.org/10.1145/3290343
[70] Alceste Scalas, Nobuko Yoshida, and Elias Benussi. 2019. Verifying

message-passing programs with dependent behavioural types. https:
//www.doc.ic.ac.uk/research/technicalreports/2019/#1 DoC Technical

report 2019/1.

[71] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2018. Programming

and proving with distributed protocols. PACMPL 2, POPL (2018). https:
//doi.org/10.1145/3158116

[72] Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and

Stephanie Weirich. 2018. Total Haskell is Reasonable Coq. In CPP.

https://doi.org/10.1145/3167092
[73] Colin Stirling. 2001. Modal and Temporal Properties of Processes.

Springer-Verlag New York, Inc., New York, NY, USA.

[74] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon,

Mooly Sagiv, Sharon Shoham, James R. Wilcox, and Doug Woos. 2018.

Modularity for decidability of deductive verification with applica-

tions to distributed systems. In PLDI. https://doi.org/10.1145/3192366.
3192414

[75] Bernardo. Toninho, Luís. Caires, and Frank Pfenning. 2011. Dependent

session types via intuitionistic linear type theory. In PPDP. https:
//doi.org/10.1145/2003476.2003499

[76] Bernardo Toninho and Nobuko Yoshida. 2017. Certifying data in

multiparty session types. Journal of Logical and Algebraic Methods in

Programming 90, C (2017). https://doi.org/j.jlamp.2016.11.005
[77] Bernardo Toninho and Nobuko Yoshida. 2018. Depending on

Session-Typed Processes. In FoSSaCS. https://doi.org/10.1007/
978-3-319-89366-2_7

[78] Nobuko Yoshida. 2004. Channel dependent types for higher-order

mobile processes. In POPL. https://doi.org/10.1145/964001.964014
[79] Nobuko Yoshida and Matthew Hennessy. 2002. Assigning Types to

Processes. Information and Computation 174, 2 (2002). https://doi.org/
10.1006/inco.2002.3113

https://github.com/rkuhn/akka-typed-session
https://github.com/rkuhn/akka-typed-session
https://github.com/rkuhn/akka-typed-session/blob/master/src/test/scala/com/rolandkuhn/akka_typed_session/auditdemo/ProcessBased.scala
https://github.com/rkuhn/akka-typed-session/blob/master/src/test/scala/com/rolandkuhn/akka_typed_session/auditdemo/ProcessBased.scala
https://github.com/rkuhn/akka-typed-session/blob/master/src/test/scala/com/rolandkuhn/akka_typed_session/auditdemo/ProcessBased.scala
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1145/3093333.3009847
https://doi.org/10.1145/3180155.3180157
https://akka.io/blog/2017/05/12/typed-protocols
https://akka.io/blog/2017/05/12/typed-protocols
https://doc.akka.io/docs/akka/2.5/dispatchers.html
https://doc.akka.io/docs/akka/2.5/dispatchers.html
https://doc.akka.io/docs/akka/2.5/remoting.html
https://doc.akka.io/docs/akka/2.5/remoting.html
http://akka.io/
https://doc.akka.io/docs/akka/2.5/typed/index.html
https://doc.akka.io/docs/akka/2.5/typed/index.html
https://doi.org/10.1145/197320.197383
https://doi.org/10.1007/978-3-662-44202-9_13
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1145/174675.174538
https://doi.org/10.1145/3158130
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1145/3062341.3062346
https://doi.org/10.1007/3-540-47764-0_22
https://doi.org/10.1007/3-540-47764-0_22
https://alcestes.github.io/effpi
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/DARTS.3.2.3
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/DARTS.2.1.11
https://doi.org/10.1145/3290343
https://www.doc.ic.ac.uk/research/technicalreports/2019/#1
https://www.doc.ic.ac.uk/research/technicalreports/2019/#1
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3167092
https://doi.org/10.1145/3192366.3192414
https://doi.org/10.1145/3192366.3192414
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/j.jlamp.2016.11.005
https://doi.org/10.1007/978-3-319-89366-2_7
https://doi.org/10.1007/978-3-319-89366-2_7
https://doi.org/10.1145/964001.964014
https://doi.org/10.1006/inco.2002.3113
https://doi.org/10.1006/inco.2002.3113

	Abstract
	1 Introduction
	2 The tyColorCustom-Calculus
	3 Type System
	4 Type-Level Model Checking
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Conclusion and Related Work
	References

