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Models of Concurrency

Petri Nets

Class of formal models of concurrency

They are formal models:
Directed graphs - “Distributed version of automata”.

They model concurrency:
Automata are sequential. Petri nets represent processes that can run
“in parallel”.

They are a whole class of models:
Different types of Petri Nets for different problems.

Petri Net Systems

Petri Net + Dynamic Behaviour

A Petri Net is a static structure “shape of a network”

A Petri Net System can “run” - execute actions.
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Motivation

Real Computers - µ-architecture

CPU = Control Unit + Arithmetic Units + Registers

Control Unit = Finite State Automaton

Communication between units uses lines:
Cable with a binary value

Clock is crucial to know which message is on a line.

⇒ Sequential Computation : Synchronous Systems

Distributed System (Several Computers)

Different Clocks: Asynchronous Systems

A CPU cannot always guess the state of other CPU’s

Relies on Communication Protocols

The state of the system is determined by the local states of each CPU

Like puzzles? → www.nandgame.com
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Basic Definitions

Automata

States: Control

Alphabet: Instructions

Arcs (arrows): Effect of an
instruction at a given state

Petri Nets

Places: local states

Transitions: change of state

Arcs: Effect of a transition on
the local states.
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Most Basic Model

Elementary Net Systems

An E.N.S. is a tuple Σ = (B,E ,F ,m0)

B: Places → Conditions

E : Transitions → Events

F ⊆ (B × E ∪ E × B): Arrows → Flow relation

m0 : B → {0, 1}: Initial Marking (Global State):
assigns 0 or 1 token to each condition.
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E.N.S. Dynamics

Neighbourhoods of Events

Given an Event e ∈ E

Pre-conditions: •e = {b ∈ B | (b, e) ∈ F}
conditions that“feed” the event

Post-conditions: e• = {b ∈ B | (e, b) ∈ F}
conditions which are “fed” by the event.

Two events e1, e2 are independent iff (•e1 ∪ e•1) ∩ (•e2 ∪ e•2) = ∅

p1 p2

p3 p4

p5

t1

t2

t3 t4

7 / 19



E.N.S. Dynamics

Enabled Events

Event e is enabled at marking m: m[e〉 iff:

each b ∈ •e has m(b) = 1 (all pre-conditions are true), AND

each b ∈ e• has m(b) = 0 (all post-conditions are false)

Two events e1, e2 are independent iff (•e1 ∪ e•1) ∩ (•e2 ∪ e•2) = ∅ Note:
several events can be enabled at the same marking.
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E.N.S. Dynamics

Firing Rule

When an event is enabled, it may fire:

m1[e〉m2 means that:
I e is enabled at m1, AND
I m2 = (m1 \ •e) ∪ e•
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Global Behaviour: Automaton

Marking Graph

Each node is a marking m

We add an arc (m1,m2) with label e, if m1[e〉m2.
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Concurrency

F.S.A.

E.N.S such that each event has ONLY
1 pre-condition and 1 post-condition

only 1 token in the whole system

then E.N.S. ' Marking Graph

Finite State Automaton
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State Space Explosion

K components of size N

Size = N ∗ K Size= NK
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Motivation Part 2

Popularity

Petri nets are widely used in the industry:
System design: Software, Hardware, Logistics, etc. . .

Two main reasons:
I Modelling Power: Expressivity, Readability
I Analysable: Algorithms for Verification

Modelling

Extensions of the basic model give flexibility.
Useful design tools.
• More features = More expressivity

Analysis

Good algorithms exist for verification.
Safety, Serviceability, Security, etc. . .
• Restrictions ⇒ More algorithms (or more efficient).
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Place Transition Systems: Definitions

Place Transition Systems

P: Places → Counters

T : Transitions → Consume and Produce

F : (B × E ∪ E × B)→ N: Arcs are now weighted

m : P → N: Marking assigns a number to each place

Firing rule: m1[t〉m2

I ∀p ∈ P : F(p, t) ≤ m1(p)
Places have enough tokens for the transition to fire, AND

I ∀p ∈ P : m2(p) = m1(p)−F(p, t) + F(t, p)
The weights on the arcs indicate how much is consumed and produced.
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Place Transition Systems are VAS
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Problems

Boundedness

A P/T net system is bounded iff its set of reachable markings is finite.

General case: PSPACE and PSPACE-complete if |P| ≥ 4,

PTIME for conflict-free nets (no choices)
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Problems

Reachability

Given a P/T net system with initial marking m0 and target marking mt ,
decide whether mt is reachable from m0.

In general, decidable but primitive recursive space!

Undecidable if we allow for (at least) two zero-test arcs.

2EXPTIME if |P| ≤ 5

PSPACE-complete for 1-safe nets (' E.N.S)

NP-complete for nets without cycles, and also for conflict-free nets
(no choices).

PTIME for bounded conflict-free nets

PTIME for marked graphs

PTIME for nets that are live, bounded, cyclic and free-choice.
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Problems

Liveness

Deciding whether for any transition t, and from any reachable marking,
there is another reachable marking that enables t.

In general, primitive recursive equivalent to reachability, hence
decidable.

General complexity is an open problem.

PSPACE-complete for 1-safe nets.

co-NP-complete free-choice nets.

PTIME for bounded bounded free-choice nets

PTIME for conflict-free nets
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Problems

Deadlock-freedom

A net is deadlock-free iff every reachable marking enables some transition.

In general, reduction to reachability in PTIME

PSPACE-complete for 1-safe nets

NP-complete 1-safe free-choice nets

PTIME for conflict-free nets.
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