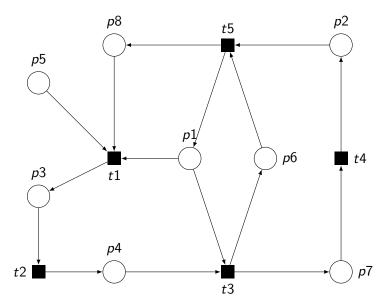
Introduction to Petri Nets

Adrián Puerto Aubel

February 7, 2025



Models of Concurrency

Petri Nets

Class of formal models of concurrency

- They are formal models:
 Directed graphs "Distributed version of automata".
- They model concurrency:
 Automata are sequential. Petri nets represent processes that can run "in parallel".
- They are a whole class of models:
 Different types of Petri Nets for different problems.

Petri Net Systems

Petri Net + Dynamic Behaviour

- A Petri Net is a static structure "shape of a network"
- A Petri Net System can "run" execute actions.

Motivation

Real Computers - μ -architecture

- CPU = Control Unit + Arithmetic Units + Registers
- Control Unit = Finite State Automaton
- Communication between units uses lines:
 Cable with a binary value
- Clock is crucial to know which message is on a line.
- ⇒ Sequential Computation : Synchronous Systems

Distributed System (Several Computers)

- Different Clocks: Asynchronous Systems
- A CPU cannot always guess the state of other CPU's
- Relies on Communication Protocols
- The state of the system is determined by the local states of each CPU

Like puzzles? \rightarrow www.nandgame.com

Automata

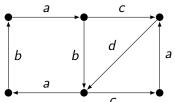
- States: Control
- Alphabet: Instructions
- Arcs (arrows): Effect of an instruction at a given state

Petri Nets

- Places: local states
- Transitions: change of state
- Arcs: Effect of a transition on the local states.

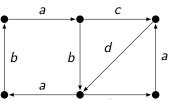
Automata

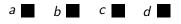
- States: Control
- Alphabet: Instructions
- Arcs (arrows): Effect of an instruction at a given state



Petri Nets

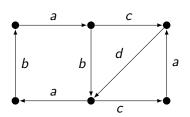
- Places: local states
- Transitions: change of state
- Arcs: Effect of a transition on the local states.





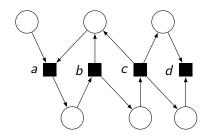
Automata

- States: Control
- Alphabet: Instructions
- Arcs (arrows): Effect of an instruction at a given state



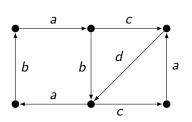
Petri Nets

- Places: local states
- Transitions: change of state
- Arcs: Effect of a transition on the local states.



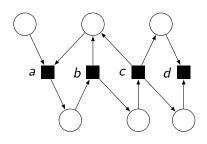
Automata

- States: Control
- Alphabet: Instructions
- Arcs (arrows): Effect of an instruction at a given state



Petri Nets

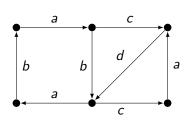
- Places: local states
- Transitions: change of state
- Arcs: Effect of a transition on the local states.



Q: What's missing?

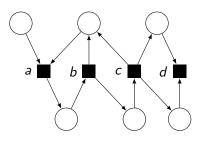
Automata

- States: Control
- Alphabet: Instructions
- Arcs (arrows): Effect of an instruction at a given state



Petri Nets

- Places: local states
- Transitions: change of state
- Arcs: Effect of a transition on the local states.



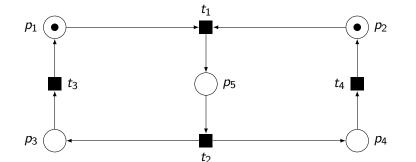
Q: What's missing? A: Initial state, accepting states

Most Basic Model

Elementary Net Systems

An E.N.S. is a tuple $\Sigma = (B, E, \mathcal{F}, m_0)$

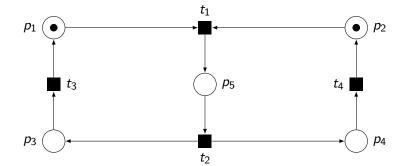
- B: Places → Conditions
 - E: Transitions \rightarrow Events
 - $\mathcal{F} \subseteq (B \times E \cup E \times B)$: Arrows \rightarrow Flow relation
 - $m_0: B \to \{0,1\}$: Initial Marking (Global State): assigns 0 or 1 token to each condition.



Neighbourhoods of Events

Given an Event $e \in E$

- Pre-conditions: ${}^{\bullet}e = \{b \in B \mid (b, e) \in \mathcal{F}\}$ conditions that "feed" the event
- Post-conditions: $e^{\bullet} = \{b \in B \mid (e, b) \in \mathcal{F}\}$ conditions which are "fed" by the event.
- Two events e_1, e_2 are independent iff $({}^{ullet}e_1 \cup e_1^{ullet}) \cap ({}^{ullet}e_2 \cup e_2^{ullet}) = \emptyset$

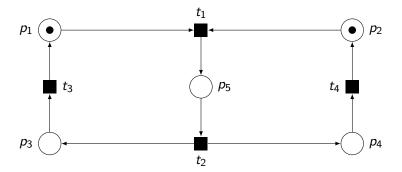


Enabled Events

Event e is enabled at marking m: m[e) iff:

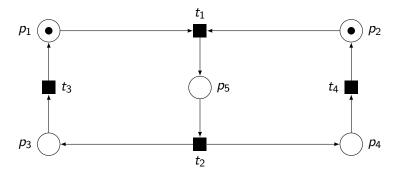
- each $b \in {}^{\bullet}e$ has m(b) = 1 (all pre-conditions are true), AND
- each $b \in e^{\bullet}$ has m(b) = 0 (all post-conditions are false)

Two events e_1, e_2 are independent iff $({}^{\bullet}e_1 \cup e_1^{\bullet}) \cap ({}^{\bullet}e_2 \cup e_2^{\bullet}) = \emptyset$ Note: several events can be enabled at the same marking.



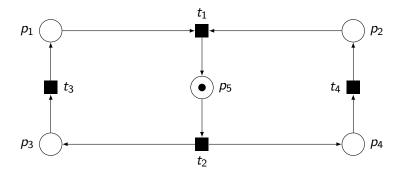
Firing Rule

- When an event is enabled, it may fire:
- $m_1[e\rangle m_2$ means that:
 - e is enabled at m_1 , AND
 - $m_2 = (m_1 \setminus {}^{\bullet}e) \cup e^{\bullet}$



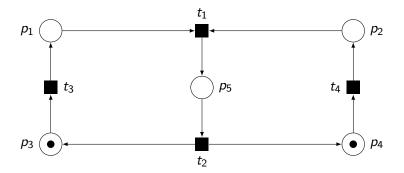
Firing Rule

- When an event is enabled, it may fire:
- $m_1[e\rangle m_2$ means that:
 - e is enabled at m_1 , AND
 - $\qquad m_2 = (m_1 \setminus {}^{\bullet}e) \cup e^{\bullet}$



Firing Rule

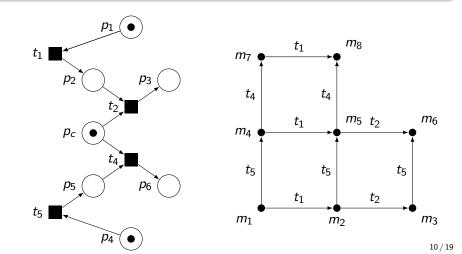
- When an event is enabled, it may fire:
- $m_1[e\rangle m_2$ means that:
 - e is enabled at m_1 , AND
 - $m_2 = (m_1 \setminus {}^{\bullet}e) \cup e^{\bullet}$



Global Behaviour: Automaton

Marking Graph

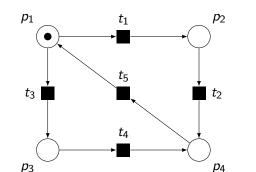
- Each node is a marking m
- We add an arc (m_1, m_2) with label e, if $m_1[e\rangle m_2$.

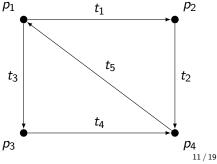


Concurrency

F.S.A.

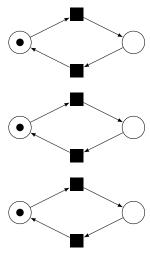
- E.N.S such that each event has ONLY
 1 pre-condition and 1 post-condition
- only 1 token in the whole system
- ullet then E.N.S. \simeq Marking Graph
- Finite State Automaton

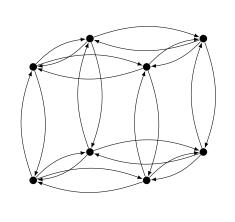




State Space Explosion

${\it K}$ components of size ${\it N}$





$$Size = N * K$$

 $Size = N^K$

Motivation Part 2

Popularity

- Petri nets are widely used in the industry:
 System design: Software, Hardware, Logistics, etc...
- Two main reasons:
 - Modelling Power: Expressivity, Readability
 - Analysable: Algorithms for Verification

Modelling

Extensions of the basic model give flexibility. Useful design tools.

• More features = More expressivity

Analysis

Good algorithms exist for verification.

Safety, Serviceability, Security, etc. . .

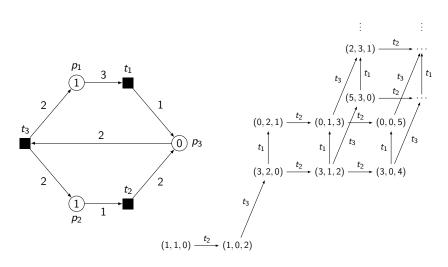
ullet Restrictions \Rightarrow More algorithms (or more efficient).

Place Transition Systems: Definitions

Place Transition Systems

- \bullet P: Places \rightarrow Counters
- T: Transitions → Consume and Produce
- $\mathcal{F}: (B \times E \cup E \times B) \to \mathbb{N}$: Arcs are now weighted
- $m: P \to \mathbb{N}$: Marking assigns a number to each place
- Firing rule: $m_1[t\rangle m_2$
 - $\forall p \in P : \mathcal{F}(p,t) \leq m_1(p)$ Places have enough tokens for the transition to fire, AND
 - $\forall p \in P : m_2(p) = m_1(p) \mathcal{F}(p,t) + \mathcal{F}(t,p)$ The weights on the arcs indicate how much is consumed and produced.

Place Transition Systems are VAS



$$t_1 = (-3,0,1)$$
; $t_2 = (0,-1,2)$; $t_3 = (2,-2,0)$
Note: Unbounded Behaviour!

Boundedness

A P/T net system is bounded iff its set of reachable markings is finite.

- General case: PSPACE and PSPACE-complete if |P| > 4,
- PTIME for conflict-free nets (no choices)

Reachability

Given a P/T net system with initial marking m_0 and target marking m_t , decide whether m_t is reachable from m_0 .

- In general, decidable but primitive recursive space!
- Undecidable if we allow for (at least) two zero-test arcs.
- 2EXPTIME if $|P| \le 5$
- PSPACE-complete for 1-safe nets (≃ E.N.S)
- NP-complete for nets without cycles, and also for conflict-free nets (no choices).
- PTIME for bounded conflict-free nets
- PTIME for marked graphs
- PTIME for nets that are live, bounded, cyclic and free-choice.

Liveness

Deciding whether for any transition t, and from any reachable marking, there is another reachable marking that enables t.

- In general, primitive recursive equivalent to reachability, hence decidable.
- General complexity is an open problem.
- PSPACE-complete for 1-safe nets.
- co-NP-complete free-choice nets.
- PTIME for bounded bounded free-choice nets
- PTIME for conflict-free nets

Deadlock-freedom

A net is deadlock-free iff every reachable marking enables some transition.

- In general, reduction to reachability in PTIME
- PSPACE-complete for 1-safe nets
- NP-complete 1-safe free-choice nets
- PTIME for conflict-free nets.